Skip to main content
Log in

Global RNA association with the transcriptionally active chromosome of chloroplasts

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

Processed chloroplast RNAs are co-enriched with preparations of the chloroplast transcriptionally active chromosome.

Abstract

Chloroplast genomes are organized as a polyploid DNA–protein structure called the nucleoid. Transcriptionally active chloroplast DNA together with tightly bound protein factors can be purified by gel filtration as a functional entity called the transcriptionally active chromosome (TAC). Previous proteomics analyses of nucleoids and of TACs demonstrated a considerable overlap in protein composition including RNA binding proteins. Therefore the RNA content of TAC preparations from Nicotiana tabacum was determined using whole genome tiling arrays. A large number of chloroplast RNAs was found to be associated with the TAC. The pattern of RNAs attached to the TAC consists of RNAs produced by different chloroplast RNA polymerases and differs from the pattern of RNA found in input controls. An analysis of RNA splicing and RNA editing of selected RNA species demonstrated that TAC-associated RNAs are processed to a similar extent as the RNA in input controls. Thus, TAC fractions contain a specific subset of the processed chloroplast transcriptome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allison LA, Simon LD, Maliga P (1996) Deletion of rpoB reveals a second distinct transcription system in plastids of higher plants. EMBO J 15:2802–2809

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barkan A, Small I (2014) Pentatricopeptide repeat proteins in plants. Annu Rev Plant Biol 65:415–442

    Article  CAS  PubMed  Google Scholar 

  • Beligni MV, Mayfield SP (2008) Arabidopsis thaliana mutants reveal a role for CSP41a and CSP41b, two ribosome-associated endonucleases, in chloroplast ribosomal RNA metabolism. Plant Mol Biol 67:389–401

    Article  CAS  PubMed  Google Scholar 

  • Bohne AV (2014) The nucleoid as a site of rRNA processing and ribosome assembly. Front Plant Sci 5:257

    Article  PubMed  PubMed Central  Google Scholar 

  • Bollenbach TJ, Sharwood RE, Gutierrez R, Lerbs-Mache S, Stern DB (2009) The RNA-binding proteins CSP41a and CSP41b may regulate transcription and translation of chloroplast-encoded RNAs in Arabidopsis. Plant Mol Biol 69:541–552

    Article  CAS  PubMed  Google Scholar 

  • Bülow S, Reiss T, Link G (1987) DNA-binding proteins of the transcriptionally active chromosome from mustard (Sinapis alba L.) chloroplasts. Curr Genet 12:157–159

    Article  Google Scholar 

  • Dillon SC, Dorman CJ (2010) Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol 8:185–195

    Article  CAS  PubMed  Google Scholar 

  • Finster S, Eggert E, Zoschke R, Weihe A, Schmitz-Linneweber C (2013) Light-dependent, plastome-wide association of the plastid-encoded RNA polymerase with chloroplast DNA. Plant J 76:849–860

    Article  CAS  PubMed  Google Scholar 

  • Freyer R, Hoch B, Neckermann K, Maier RM, Kossel H (1993) RNA editing in maize chloroplasts is a processing step independent of splicing and cleavage to monocistronic mRNAs. Plant J 4:621–629

    Article  CAS  PubMed  Google Scholar 

  • Gao ZP, Yu QB, Zhao TT, Ma Q, Chen GX, Yang ZN (2011) A functional component of the transcriptionally active chromosome complex, Arabidopsis pTAC14, interacts with pTAC12/HEMERA and regulates plastid gene expression. Plant Physiol 157:1733–1745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao ZP, Chen GX, Yang ZN (2012) Regulatory role of Arabidopsis pTAC14 in chloroplast development and plastid gene expression. Plant Signal Behav 7:1354–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghatak P, Karmakar K, Kasetty S, Chatterji D (2011) Unveiling the role of Dps in the organization of mycobacterial nucleoid. PLoS ONE 6:e16019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajdukiewicz PT, Allison LA, Maliga P (1997) The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J 16:4041–4048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallick RB, Lipper C, Richards OC, Rutter WJ (1976) Isolation of a transcriptionally active chromosome from chloroplasts of Euglena gracilis. Biochemistry 15:3039–3045

    Article  CAS  PubMed  Google Scholar 

  • Hertel S, Zoschke R, Neumann L, Qu Y, Axmann IM, Schmitz-Linneweber C (2013) Multiple checkpoints for the expression of the chloroplast-encoded splicing factor MatK. Plant Physiol 163:1686–1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igloi GL, Kossel H (1992) The transcriptional apparatus of chloroplasts. Crit Rev Plant Sci 10:525–558

    Article  CAS  Google Scholar 

  • Korzheva N, Mustaev A, Kozlov M, Malhotra A, Nikiforov V, Goldfarb A, Darst SA (2000) A structural model of transcription elongation. Science 289:619–625

    Article  CAS  PubMed  Google Scholar 

  • Krause K, Krupinska K (2000) Molecular and functional properties of highly purified transcriptionally active chromosomes from spinach chloroplasts. Physiol Plant 109:188–195

    Article  CAS  Google Scholar 

  • Krupinska K, Falk J (1994) Changes in RNA polymerase activity during development and senescence of barley chloroplasts. Comparative analysis of transcripts synthesized either in run-on assays or by transcriptionally active chromosomes (TAC). J Plant Physiol 143:298–305

    Article  CAS  Google Scholar 

  • Kupsch C, Ruwe R, Gusewski S, Tillich M, Small I, Schmitz-Linneweber C (2012) Arabidopsis chloroplast RNA binding proteins CP31A and CP29A associate with large transcript pools and confer cold stress tolerance by influencing multiple chloroplast RNA processing steps. Plant Cell 24:4266–4280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luijsterburg MS, White MF, van Driel R, Dame RT (2008) The major architects of chromatin: architectural proteins in bacteria, archaea and eukaryotes. Crit Rev Biochem Mol Biol 43:393–418

    Article  CAS  PubMed  Google Scholar 

  • Majeran W et al (2011) Nucleoid-enriched proteomes in developing plastids and chloroplasts from maize leaves: a new conceptual framework for nucleoid functions. Plant Physiol 158:156–189

    Article  PubMed  PubMed Central  Google Scholar 

  • Marechal A, Parent JS, Veronneau-Lafortune F, Joyeux A, Lang BF, Brisson N (2009) Whirly proteins maintain plastid genome stability in Arabidopsis. Proc Natl Acad Sci USA 106:14693–14698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melonek J, Mulisch M, Schmitz-Linneweber C, Grabowski E, Hensel G, Krupinska K (2010) Whirly1 in chloroplasts associates with intron containing RNAs and rarely co-localizes with nucleoids. Planta 232:471–548

    Article  CAS  PubMed  Google Scholar 

  • Melonek J, Matros A, Trosch M, Mock HP, Krupinska K (2012) The core of chloroplast nucleoids contains architectural SWIB domain proteins. Plant Cell 24:3060–3073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melonek J, Oetke S, Krupinska K (2016) Multifunctionality of plastid nucleoids as revealed by proteome analyses. Biochim Biophys Acta 1864:1016–1038

    Article  CAS  PubMed  Google Scholar 

  • Miyagi T, Kapoor S, Sugita M, Sugiura M (1998) Transcript analysis of the tobacco plastid operon rps2/atpI/H/F/A reveals the existence of a non-consensus type II (NCII) promoter upstream of the atpI coding sequence. Mol Gen Genet 257:299–307

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Ohta M, Sugiura M, Sugita M (2001) Chloroplast ribonucleoproteins function as a stabilizing factor of ribosome-free mRNAs in the stroma. J Biol Chem 276:147–152

    Article  CAS  PubMed  Google Scholar 

  • Nudler E, Mustaev A, Lukhtanov E, Goldfarb A (1997) The RNA-DNA hybrid maintains the register of transcription by preventing backtracking of RNA polymerase. Cell 89:33–41

    Article  CAS  PubMed  Google Scholar 

  • Oldenburg DJ, Bendich AJ (2004) Most chloroplast DNA of maize seedlings in linear molecules with defined ends and branched forms. J Mol Biol 335:953–970

    Article  CAS  PubMed  Google Scholar 

  • Pfalz J, Pfannschmidt T (2013) Essential nucleoid proteins in early chloroplast development. Trends Plant Sci 18:186–194

    Article  CAS  PubMed  Google Scholar 

  • Pfalz J, Liere K, Kandlbinder A, Dietz KJ, Oelmuller R (2006) pTAC2, -6, and -12 are components of the transcriptionally active plastid chromosome that are required for plastid gene expression. Plant Cell 18:176–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poulsen C (1983) The barley chloroplast genome: physical structure and transcriptional activity in vivo. Carlsberg Res Commun 48:57–80

    Article  CAS  Google Scholar 

  • Qi Y et al (2011) Arabidopsis CSP41 proteins form multimeric complexes that bind and stabilize distinct plastid transcripts. J Exp Bot 63:1251–1270

    Article  PubMed  PubMed Central  Google Scholar 

  • Rabilloud T (1992) A comparison between low background silver diammine and silver nitrate protein stains. Electrophoresis 13:429–439

    Article  CAS  PubMed  Google Scholar 

  • Ruwe H, Wang G, Gusewski S, Schmitz-Linneweber C (2016) Systematic analysis of plant mitochondrial and chloroplast small RNAs suggests organelle-specific mRNA stabilization mechanisms. Nucleic Acids Res 44:7406–7417

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sekine K, Hase T, Sato N (2002) Reversible DNA compaction by sulfite reductase regulates transcriptional activity of chloroplast nucleoids. J Biol Chem 277(27):24399–24404

    Article  CAS  PubMed  Google Scholar 

  • Shaver JM, Oldenburg DJ, Bendich AJ (2008) The structure of chloroplast DNA molecules and the effects of light on the amount of chloroplast DNA during development in Medicago truncatula. Plant Physiol 146:1064–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suck R, Zeltz P, Falk J, Acker A, Kossel H, Krupinska K (1996) Transcriptionally active chromosomes (TACs) of barley chloroplasts contain the alpha-subunit of plastome-encoded RNA polymerase. Curr Genet 30:515–521

    Article  CAS  PubMed  Google Scholar 

  • Trifa Y, Lerbs-Mache S (2000) Extra-ribosomal function(s) of the plastid ribosomal protein L4 in the expression of ribosomal components in spinach. Mol Gen Genet 263:642–647

    Article  CAS  PubMed  Google Scholar 

  • Tsudzuki T, Wakasugi T, Sugiura M (2001) Comparative analysis of RNA editing sites in higher plant chloroplasts. J Mol Evol 53:327–332

    Article  CAS  PubMed  Google Scholar 

  • Woldringh CL (2002) The role of co-transcriptional translation and protein translocation (transertion) in bacterial chromosome segregation. Mol Microbiol 45:17–29

    Article  CAS  PubMed  Google Scholar 

  • Yagi Y, Ishizaki Y, Nakahira Y, Tozawa Y, Shiina T (2012) Eukaryotic-type plastid nucleoid protein pTAC3 is essential for transcription by the bacterial-type plastid RNA polymerase. Proc Natl Acad Sci USA 109:7541–7546. doi:10.1073/pnas.1119403109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao WB, Meng BY, Tanaka M, Sugiura M (1989) An additional promoter within the protein-coding region of the psbD-psbC gene cluster in tobacco chloroplast DNA. Nucleic Acids Res 17:9583–9591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zerges W, Rochaix JD (1998) Low density membranes are associated with RNA-binding proteins and thylakoids in the chloroplast of Chlamydomonas reinhardtii. J Cell Biol 140:101–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Generous funding by the Deutsche Forschungsgemeinschaft (Grant No. SCHM 1698/5-1) and the Einstein foundation (Einstein Stiftung Berlin) to CSL is gratefully acknowledged. Support of M.-K. L. by the IRI for Life Sciences is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

CSL and KK conception and design of study, MKL, SF, JM, SO acquisition of data, MKL, SF, CSL and KK analysis and/or interpretation of data, CSL drafting the manuscript, KK, MKL, SF, JM revising the manuscript critically for important intellectual content and CSL, KK, MKL, SF, JM, SO approval of the version of the manuscript to be published.

Corresponding authors

Correspondence to Karin Krupinska or Christian Schmitz-Linneweber.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehniger, MK., Finster, S., Melonek, J. et al. Global RNA association with the transcriptionally active chromosome of chloroplasts. Plant Mol Biol 95, 303–311 (2017). https://doi.org/10.1007/s11103-017-0649-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-017-0649-x

Keywords

Navigation