Skip to main content

The targeting of starch binding domains from starch synthase III to the cell wall alters cell wall composition and properties

Abstract

Key message

Starch binding domains of starch synthase III from Arabidopsis thaliana (SBD123) binds preferentially to cell wall polysaccharides rather than to starch in vitro. Transgenic plants overexpressing SBD123 in the cell wall are larger than wild type. Cell wall components are altered in transgenic plants. Transgenic plants are more susceptible to digestion than wild type and present higher released glucose content. Our results suggest that the transgenic plants have an advantage for the production of bioethanol in terms of saccharification of essential substrates.

Abstract

The plant cell wall, which represents a major source of biomass for biofuel production, is composed of cellulose, hemicelluloses, pectins and lignin. A potential biotechnological target for improving the production of biofuels is the modification of plant cell walls. This modification is achieved via several strategies, including, among others, altering biosynthetic pathways and modifying the associations and structures of various cell wall components. In this study, we modified the cell wall of A. thaliana by targeting the starch-binding domains of A. thaliana starch synthase III to this structure. The resulting transgenic plants (E8-SDB123) showed an increased biomass, higher levels of both fermentable sugars and hydrolyzed cellulose and altered cell wall properties such as higher laxity and degradability, which are valuable characteristics for the second-generation biofuels industry. The increased biomass and degradability phenotype of E8-SBD123 plants could be explained by the putative cell-wall loosening effect of the in tandem starch binding domains. Based on these results, our approach represents a promising biotechnological tool for reducing of biomass recalcitrance and therefore, the need for pretreatments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abbott DW, Boraston AB (2012) Quantitative approaches to the analysis of carbohydrate-binding module function. Methods Enzymol 510:211–231

    CAS  Article  PubMed  Google Scholar 

  2. Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–42

    Google Scholar 

  3. Araki R, Karita S, Tanaka A, Kimura T, Sakka K (2006) Effect of family 22 carbohydrate-binding module on the thermostability of Xyn10B catalytic module from Clostridium stercorarium. Biosci Biotechnol Biochem 70:3039–3041

    CAS  Article  PubMed  Google Scholar 

  4. Arantes V, Saddler JN (2010) Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3:4

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ball SG, Morell MK (2003) From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu Rev Plant Biol 54:207–233

    CAS  Article  PubMed  Google Scholar 

  6. Banerjee S, Tayade RA, Sharma BD (2013) Green synthesis of acid esters from furfural via stobbe condensation. J Chem. doi:10.1155/2013/152370

    Google Scholar 

  7. Beemster GT, Baskin TI (1998) Analysis of cell division and elongation underlying the developmental acceleration of root growth in Arabidopsis thaliana. Plant Physiol 116:1515–1526

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Bergmeyer H-U (2012) Methods of enzymatic analysis. Elsevier, Amsterdam

  9. Berrin JG, Juge N (2008) Factors affecting xylanase functionality in the degradation of arabinoxylans. Biotechnol Lett 30:1139–1150

    CAS  Article  PubMed  Google Scholar 

  10. Biswal AK, Hao Z, Pattathil S, Yang X, Winkeler K, Collins C, Mohanty SS, Richardson EA, Gelineo-Albersheim I, Hunt K, Ryno D, Sykes RW, Turner GB, Ziebell A, Gjersing E, Lukowitz W, Davis MF, Decker SR, Hahn MG, Mohnen D (2015) Downregulation of GAUT12 in Populus deltoides by RNA silencing results in reduced recalcitrance, increased growth and reduced xylan and pectin in a woody biofuel feedstock. Biotechnol Biofuels 8:41

    Article  PubMed  PubMed Central  Google Scholar 

  11. Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54:484–489

    CAS  Article  PubMed  Google Scholar 

  12. Bolam DN, Ciruela A, McQueen-Mason S, Simpson P, Williamson MP, Rixon JE, Boraston A, Hazlewood GP, Gilbert HJ (1998) Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity. Biochem J 331(Pt 3):775–781

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Gorlach J (2001) Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13:1499–1510

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Buleon A, Colonna P, Planchot V, Ball S (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23:85–112

    CAS  Article  PubMed  Google Scholar 

  16. Busi MV, Palopoli N, Valdez HA, Fornasari MS, Wayllace NZ, Gomez-Casati DF, Parisi G, Ugalde RA (2008) Functional and structural characterization of the catalytic domain of the starch synthase III from Arabidopsis thaliana. Proteins 70:31–40

    CAS  Article  PubMed  Google Scholar 

  17. Busi M, Gomez-Casati D, Martín M, Barchiesi J, Grisolía M, Hedín N, Carrillo J (2014) Starch metabolism in green plants. In: Ramawat KG, Mérillon J-M (eds) Polysaccharides. Springer, New York, pp 1–42

    Chapter  Google Scholar 

  18. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37:D233–D238

    CAS  Article  PubMed  Google Scholar 

  19. Carpita NC (1996) Structure and biogenesis of the cell walls of grasses. Annu Rev Plant Physiol Plant Mol Biol 47:445–476

    CAS  Article  PubMed  Google Scholar 

  20. Cassab GI (1998) Plant cell wall proteins. Annu Rev Plant Physiol Plant Mol Biol 49:281–309

    CAS  Article  PubMed  Google Scholar 

  21. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    CAS  Article  PubMed  Google Scholar 

  22. Cosgrove DJ (1993) How do plant cell walls extend? Plant Physiol 102:1–6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. d’Amour J, Gosselin C, Arul J, Castaigne F, Willemot C (1993) Gamma-radiation affects cell wall composition of strawberries. J Food Sci 58:182–185

    Article  Google Scholar 

  24. Denyer K, Sidebottom C, Hylton CM, Smith AM (1993) Soluble isoforms of starch synthase and starch-branching enzyme also occur within starch granules in developing pea embryos. Plant J 4:191–198

    CAS  Article  PubMed  Google Scholar 

  25. Doblin MS, Johnson KL, Humphries J, Newbigin EJ, Bacic A (2014) Are designer plant cell walls a realistic aspiration or will the plasticity of the plant’s metabolism win out? Curr Opin Biotechnol 26:108–114

    CAS  Article  PubMed  Google Scholar 

  26. Donnelly PM, Bonetta D, Tsukaya H, Dengler RE, Dengler NG (1999) Cell cycling and cell enlargement in developing leaves of Arabidopsis. Dev Biol 215(407 –):19

    Google Scholar 

  27. Duryea ML (1985) Evaluating seedling quality: principles, procedures, and predictive abilities of major tests. In: Proceedings of the workshop held October 16–18, 1984

  28. Eudes A, George A, Mukerjee P, Kim JS, Pollet B, Benke PI, Yang F, Mitra P, Sun L, Cetinkol OP, Chabout S, Mouille G, Soubigou-Taconnat L, Balzergue S, Singh S, Holmes BM, Mukhopadhyay A, Keasling JD, Simmons BA, Lapierre C, Ralph J, Loque D (2012) Biosynthesis and incorporation of side-chain-truncated lignin monomers to reduce lignin polymerization and enhance saccharification. Plant Biotechnol J 10:609–620

    CAS  Article  PubMed  Google Scholar 

  29. Gomez-Casati DF, Martin M, Busi MV (2013) Polysaccharide-synthesizing glycosyltransferases and carbohydrate binding modules: the case of starch synthase III. Protein Pept Lett 20:856–863

    CAS  Article  PubMed  Google Scholar 

  30. Hatfield RD, Grabber J, Ralph J, Brei K (1999) Using the acetyl bromide assay to determine lignin concentrations in herbaceous plants: some cautionary notes. J Agric Food Chem 47:628–632

    CAS  Article  PubMed  Google Scholar 

  31. Hennen-Bierwagen TA, Liu F, Marsh RS, Kim S, Gan Q, Tetlow IJ, Emes MJ, James MG, Myers AM (2008) Starch biosynthetic enzymes from developing maize endosperm associate in multisubunit complexes. Plant Physiol 146:1892–1908

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Hennen-Bierwagen TA, Lin Q, Grimaud F, Planchot V, Keeling PL, James MG, Myers AM (2009) Proteins from multiple metabolic pathways associate with starch biosynthetic enzymes in high molecular weight complexes: a model for regulation of carbon allocation in maize amyloplasts. Plant Physiol 149:1541–1559

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Hoebler C, Barry JL, David A, Delort-Laval J (1989) Rapid acid hydrolysis of plant cell wall polysaccharides and simplified quantitative determination of their neutral monosaccharides by gas-liquid chromatography. J Agric Food Chem 37:360–367

    CAS  Article  Google Scholar 

  34. Horiguchi G, Kim GT, Tsukaya H (2005) The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana. Plant J 43:68–78

    CAS  Article  PubMed  Google Scholar 

  35. Iiyama K, Wallis AFA (1988) An improved acetyl bromide procedure for determining lignin in Woods and wood pulps. Wood Sci Technol 22:271–280

    CAS  Article  Google Scholar 

  36. James MG, Denyer K, Myers AM (2003) Starch synthesis in the cereal endosperm. Curr Opin Plant Biol 6:215–222

    CAS  Article  PubMed  Google Scholar 

  37. Jervis EJ, Haynes CA, Kilburn DG (1997) Surface diffusion of cellulases and their isolated binding domains on cellulose. J Biol Chem 272:24016–24023

    CAS  Article  PubMed  Google Scholar 

  38. Kalluri UC, Yin H, Yang X, Davison BH (2014) Systems and synthetic biology approaches to alter plant cell walls and reduce biomass recalcitrance. Plant Biotechnol J 12:1207–1216

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Koornneef M, Hanhart CJ, van der Veen JH (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 229:57–66

    CAS  Article  PubMed  Google Scholar 

  40. Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmuller E, Dormann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L, Fernie AR, Steinhauser D (2005) GMD@CSB.DB: the Golm metabolome database. Bioinformatics 21:1635–1638

    CAS  Article  PubMed  Google Scholar 

  41. Larran A, Jozami E, Vicario L, Feldman SR, Podesta FE, Permingeat HR (2015) Evaluation of biological pretreatments to increase the efficiency of the saccharification process using Spartina argentinensis as a biomass resource. Bioresour Technol 194:320–325

    CAS  Article  PubMed  Google Scholar 

  42. Lavarack BP, Griffin GJ, Rodman D (2002) The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass Bioenergy 23:367–380

    CAS  Article  Google Scholar 

  43. Levy I, Shani Z, Shoseyov O (2002) Modification of polysaccharides and plant cell wall by endo-1, 4-β-glucanase and cellulose-binding domains. Biomol Eng 19:14

    Article  Google Scholar 

  44. Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR (2006) Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc 1:387–396

    CAS  Article  PubMed  Google Scholar 

  45. Loque D, Scheller HV, Pauly M (2015) Engineering of plant cell walls for enhanced biofuel production. Curr Opin Plant Biol 25:151–161

    CAS  Article  PubMed  Google Scholar 

  46. Marga F, Grandbois M, Cosgrove DJ, Baskin TI (2005) Cell wall extension results in the coordinate separation of parallel microfibrils: evidence from scanning electron microscopy and atomic force microscopy. Plant J 43:181–190

    CAS  Article  PubMed  Google Scholar 

  47. Martin M, Wayllace NZ, Valdez HA, Gomez-Casati DF, Busi MV (2013) Improving the glycosyltransferase activity of Agrobacterium tumefaciens glycogen synthase by fusion of N-terminal starch binding domains (SBDs). Biochimie 95:1865–1870

    CAS  Article  PubMed  Google Scholar 

  48. Minic Z, Jamet E, San-Clemente H, Pelletier S, Renou JP, Rihouey C, Okinyo DP, Proux C, Lerouge P, Jouanin L (2009) Transcriptomic analysis of Arabidopsis developing stems: a close-up on cell wall genes. BMC Plant Biol 9:6

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277

    CAS  Article  PubMed  Google Scholar 

  50. Nardi CF, Villarreal NM, Rossi FR, Martinez S, Martinez GA, Civello PM (2015) Overexpression of the carbohydrate binding module of strawberry expansin2 in Arabidopsis thaliana modifies plant growth and cell wall metabolism. Plant Mol Biol 88:101–117

    CAS  Article  PubMed  Google Scholar 

  51. Nevoigt E (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 72:379–412

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Obembe OO, Jacobsen E, Visser R, Vincken JP (2007) Expression of an expansin carbohydrate-binding module affects xylem and phloem formation. Afr J Biotechnol 6:9

    Google Scholar 

  53. Palopoli N, Busi MV, Fornasari MS, Gomez-Casati D, Ugalde R, Parisi G (2006) Starch-synthase III family encodes a tandem of three starch-binding domains. Proteins 65:27–31

    CAS  Article  PubMed  Google Scholar 

  54. Pollet A, Sansen S, Raedschelders G, Gebruers K, Rabijns A, Delcour JA, Courtin CM (2009) Identification of structural determinants for inhibition strength and specificity of wheat xylanase inhibitors TAXI-IA and TAXI-IIA. FEBS J 276:3916–3927

    CAS  Article  PubMed  Google Scholar 

  55. Rautengarten C, Ebert B, Moreno I, Temple H, Herter T, Link B, Donas-Cofre D, Moreno A, Saez-Aguayo S, Blanco F, Mortimer JC, Schultink A, Reiter WD, Dupree P, Pauly M, Heazlewood JL, Scheller HV, Orellana A (2014) The Golgi localized bifunctional UDP-rhamnose/UDP-galactose transporter family of Arabidopsis. Proc Natl Acad Sci USA 111:11563–11568

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Ritchie GA (1984) Assesing seedling quality. In: Duryea ML, Landis TD (eds) Forest nursery manual: production of bareroot seedlings. Martinus Nijhoff/Dr W. Junk Publishers, The Hague/Boston/Lancaster, pp 243–259

  57. Rodriguez RE, Mecchia MA, Debernardi JM, Schommer C, Weigel D, Palatnik JF (2010) Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development 137:103–112

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Rodriguez-Sanoja R, Ruiz B, Guyot JP, Sanchez S (2005) Starch-binding domain affects catalysis in two Lactobacillus alpha-amylases. Appl Environ Microbiol 71:297–302

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Rohila JS, Chen M, Cerny R, Fromm ME (2004) Improved tandem affinity purification tag and methods for isolation of protein heterocomplexes from plants. Plant J 38:172–181

    CAS  Article  PubMed  Google Scholar 

  60. Rymen B, Coppens F, Dhondt S, Fiorani F, Beemster GT (2010) Kinematic analysis of cell division and expansion. Methods Mol Biol 655:203–227

    CAS  Article  PubMed  Google Scholar 

  61. Sato K, Suzuki R, Nishikubo N, Takenouchi S, Ito S, Nakano Y, Nakaba S, Sano Y, Funada R, Kajita S, Kitano H, Katayama Y (2010) Isolation of a novel cell wall architecture mutant of rice with defective Arabidopsis COBL4 ortholog BC1 required for regulated deposition of secondary cell wall components. Planta 232:257–270

    CAS  Article  PubMed  Google Scholar 

  62. Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    CAS  Article  PubMed  Google Scholar 

  63. Shen H, Poovaiah CR, Ziebell A, Tschaplinski TJ, Pattathil S, Gjersing E, Engle NL, Katahira R, Pu Y, Sykes R, Chen F, Ragauskas AJ, Mielenz JR, Hahn MG, Davis M, Stewart CN, Jr., Dixon RA (2013) Enhanced characteristics of genetically modified switchgrass (Panicum virgatum L.) for high biofuel production. Biotechnol Biofuels 6: 71

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Shoseyov O, Shani Z, Shpigel E (2001) Transgenic plants of altered morphology. US Patent 6,184,440. US Patent and Trademark Office, Washington DC

  65. Shoseyov O, Shani Z, Levy I (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev 70(283 –):95

    Google Scholar 

  66. Simpson HD, Barras F (1999) Functional analysis of the carbohydrate-binding domains of Erwinia chrysanthemi Cel5 (Endoglucanase Z) and an Escherichia coli putative chitinase. J Bacteriol 181:4611–4616

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Southall SM, Simpson PJ, Gilbert HJ, Williamson G, Williamson MP (1999) The starch-binding domain from glucoamylase disrupts the structure of starch. FEBS Lett 447:58–60

    CAS  Article  PubMed  Google Scholar 

  68. Teeri TT, Penttila M, Keranen S, Nevalainen H, Knowles JK (1992) Structure, function, and genetics of cellulases. Biotechnology 21:417–445

    CAS  PubMed  Google Scholar 

  69. Tetlow IJ, Morell MK, Emes MJ (2004) Recent developments in understanding the regulation of starch metabolism in higher plants. J Exp Bot 55:2131–2145

    CAS  Article  PubMed  Google Scholar 

  70. Tilley JMA, Terry RA (1963) A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci 18:104–111

    CAS  Article  Google Scholar 

  71. Tormo J, Lamed R, Chirino AJ, Morag E, Bayer EA, Shoham Y, Steitz TA (1996) Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J 15:5739–5751

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Turner SR, Somerville CR (1997) Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9:689–701

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. Valdez HA, Busi MV, Wayllace NZ, Parisi G, Ugalde RA, Gomez-Casati DF (2008) Role of the N-terminal starch-binding domains in the kinetic properties of starch synthase III from Arabidopsis thaliana. Biochemistry 47:3026–3032

    CAS  Article  PubMed  Google Scholar 

  74. Valdez HA, Peralta DA, Wayllace NZ, Grisolía MJ, Gomez-Casati DF, Busi MV (2011) Preferential binding of SBD from Arabidopsis thaliana SSIII to polysaccharides: Study of amino acid residues involved. Starch/Stärke 63:451–460

    CAS  Article  Google Scholar 

  75. Vicente AR, Costa ML, Martínez GA, Chaves AR, Civello PM (2005) Effect of heat treatments on cell wall degradation and softening in strawberry fruit. Postharvest Biol Technol 38:213–222

    CAS  Article  Google Scholar 

  76. Wayllace NZ, Valdez HA, Ugalde RA, Busi MV, Gomez-Casati DF (2010) The starch-binding capacity of the noncatalytic SBD2 region and the interaction between the N- and C-terminal domains are involved in the modulation of the activity of starch synthase III from Arabidopsis thaliana. FEBS J 277:428–440

    CAS  Article  PubMed  Google Scholar 

  77. Weigel D, Glazebrook J (2002) A laboratory manual. CSHL Press, pp 1–354

  78. Willats WG, Orfila C, Limberg G, Buchholt HC, van Alebeek GJ, Voragen AG, Marcus SE, Christensen TM, Mikkelsen JD, Murray BS, Knox JP (2001) Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls. Implications for pectin methyl esterase action, matrix properties, and cell adhesion. J Biol Chem 276:19404–19413

    CAS  Article  PubMed  Google Scholar 

  79. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572

    CAS  Article  PubMed  Google Scholar 

  81. Zhang X, Szydlowski N, Delvalle D, D’Hulst C, James MG, Myers AM (2008) Overlapping functions of the starch synthases SSII and SSIII in amylopectin biosynthesis in Arabidopsis. BMC Plant Biol 8:96

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Agencia Nacional de Promoción Científica y Técnológica (PICT 2010-0543 and PICT 2011-0982), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP#237 and #134) and Secretaría de Estado de Ciencia, Tecnología e Innovación de Santa Fe (SECTEI -2010-113-14). MJG and DAP are doctoral fellows from CONICET. HAV, JB, DFGC and MVB are research members from CONICET. The authors thank Ing. Martín Reggiardo-Sobre (CEFOBI) for his technical assistance with the in in vitro dry matter digestibility assays and Bioq. José M. Pellegrino from Instituto de Fisiología Experimental (IFISE) for his advice in general microscopy and image processing.

Author contributions

MJG, DAP, JB, DGC, and MVB designed the conception and delineation of the study; prepared the manuscript and reviewed it before submission. MJG, DAP, HAV and JB conducted the required experiments, performed the acquisition of the data or analyzed such information. All authors read and approved the final manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to María V. Busi.

Additional information

Accession numbers: Starch synthase III, locus name At1g11720; Expansin 8, locus name At2g40610.

Mauricio J. Grisolia and Diego A. Peralta have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 508 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grisolia, M.J., Peralta, D.A., Valdez, H.A. et al. The targeting of starch binding domains from starch synthase III to the cell wall alters cell wall composition and properties. Plant Mol Biol 93, 121–135 (2017). https://doi.org/10.1007/s11103-016-0551-y

Download citation

Keywords

  • Starch binding domains
  • Cell wall
  • Cell extension
  • Cell wall digestibility
  • Fermentable sugars