Skip to main content
Log in

Factors affecting xylanase functionality in the degradation of arabinoxylans

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Endo-β-1,4-xylanases are key enzymes in the degradation of arabinoxylans, the main non-starch polysaccharides from grain cell walls. Due to the heterogeneity of arabinoxylans, xylanases with different characteristics are required in industrial applications but the choice of the enzyme is still largely empirical. Although the classification into glycoside hydrolase families greatly helped to derive mechanistic information on the catalytic and substrate specificity of xylanases, other factors e.g. their sensitivity to endogenous inhibitors, the presence of carbohydrate-binding module(s) and their degree of selectivity towards soluble versus insoluble substrate may play a role in determining the functionality of these enzymes in the degradation of arabinoxylans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Beliën T, Van Campenhout S, Van Acker M, Volckaert G (2005) Cloning and characterization of two xylanases from the cereal phytopathogen Fusarium graminearum and their inhibition profile against xylanase inhibitors from wheat. Biochem Biophys Res Commun 327:407–414

    Article  PubMed  CAS  Google Scholar 

  • Beliën T, Van Campenhout S, Vanden Bosch A, Bourgois TM, Rombouts S, Robben J, Courtin CM, Delcour JA, Volckaert G (2007a) Engineering molecular recognition of endoxylanase enzymes and their inhibitors through phage display. J Mol Recognit 20:103–112

    Article  PubMed  CAS  Google Scholar 

  • Beliën T, Van Campenhout S, Van Acker M, Robben J, Courtin CM, Delcour JA, VoIckaert G (2007b) Mutational analysis of endoxylanases XylA and XylB from the phytopathogen Fusarium graminearum reveals comprehensive insights into their inhibitor insensitivity. Appl Environ Microbiol 73:4602–4608

    Article  PubMed  CAS  Google Scholar 

  • Berrin JG, Ajandouz EH, Georis J, Arnaut F, Juge N (2007) Substrate and product hydrolysis specificity in family 11 glycoside hydrolases: an analysis of Penicillium funiculosum and Penicillium griseofulvum xylanases. Appl Microbiol Biotechnol 74:1001–1010

    Article  PubMed  CAS  Google Scholar 

  • Biely P, Krátky Z, Vršanská M (1981) Substrate binding site of endo-1,4-beta-xylanase of the yeast Cryptococcus albidus. Eur J Biochem 119:559–564

    Article  PubMed  CAS  Google Scholar 

  • Biely P, Vrsanská M, Tenkanen M, Kluepfel D (1997) Endo-beta-1,4-xylanase families: differences in catalytic properties. J Biotechnol 57:151–166

    Article  PubMed  CAS  Google Scholar 

  • Blake AW, McCartney L, Flint JE, Bolam DN, Boraston AB, Gilbert HJ, Knox JP (2006) Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes. J Biol Chem 281:29321–29329

    Article  PubMed  CAS  Google Scholar 

  • Bonnin E, Daviet S, Sorensen JF, Sibbesen O, Golson A, Juge N, Saulnier L (2006) Behaviour of family 10 and 11 xylanases towards arabinoxylans with varying structure. J Sci Food Agric 86:1618–1622

    Article  CAS  Google Scholar 

  • Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781

    Article  PubMed  CAS  Google Scholar 

  • Bourgois TM, Nguyen DV, Sansen S, Rombouts S, Beliën T, Fierens K, Raedschelders G, Rabijns A, Courtin CM, Delcour JA, Van Campenhout S, Volckaert G (2007) Targeted molecular engineering of a family 11 endoxylanase to decrease its sensitivity towards Triticum aestivum endoxylanase inhibitor types. J Biotechnol 130:95–105

    Article  PubMed  CAS  Google Scholar 

  • Brutus A, Villard C, Durand A, Tahir T, Furniss C, Puigserver A, Juge N, Giardina T (2004) The inhibition specificity of recombinant Penicillium funiculosum xylanase B towards wheat proteinaceous inhibitors. Biochim Biophys Acta 1701:121–128

    PubMed  CAS  Google Scholar 

  • Brutus A, Reca IB, Herga S, Mattei B, Puigserver A, Chaix JC, Juge N, Bellincampi D, Giardina T (2005) A family 11 xylanase from the pathogen Botrytis cinerea is inhibited by plant endoxylanase inhibitors XIP-I and TAXI-I. Biochem Biophys Res Commun 337:160–166

    Article  PubMed  CAS  Google Scholar 

  • Charnock SJ, Lakey JH, Virden R, Hughes N, Sinnott ML, Hazlewood GP, Pickersgill R, Gilbert HJ (1997) Key residues in subsite F play a critical role in the activity of Pseudomonas fluorescens subspecies cellulosa xylanase A against xylooligosaccharides but not against highly polymeric substrates such as xylan. J Biol Chem 272:2942–2951

    Article  PubMed  CAS  Google Scholar 

  • Charnock SJ, Spurway TD, Xie H, Beylot MH, Virden R, Warren RA, Hazlewood GP, Gilbert HJ (1998) The topology of the substrate binding clefts of glycosyl hydrolase family 10 xylanases are not conserved. J Biol Chem 273:32187–32199

    Article  PubMed  CAS  Google Scholar 

  • Choct M, Kocher A, Waters DL, Pettersson D, Ross G (2004) A comparison of three xylanases on the nutritive value of two wheats for broiler chickens. Br J Nutr 92:53–61

    Article  PubMed  CAS  Google Scholar 

  • Christophersen C, Andersen E, Jakobsen TS, Wagner P (1997) Xylanases in wheat separation. Starch 49:5–12

    Article  CAS  Google Scholar 

  • Collins T, Meuwis MA, Stals I, Claeyssens M, Feller G, Gerday C (2002) A novel family 8 xylanase, functional and physicochemical characterization. J Biol Chem 277:35133–35139

    Article  PubMed  CAS  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Micobiol Rev 29:3–23

    Article  CAS  Google Scholar 

  • Courtin CM, Delcour JA (2001) Relative activity of endoxylanases towards water-extractable and water-unextractable arabinoxylan. J Cereal Sci 33:301–312

    Article  CAS  Google Scholar 

  • Courtin CM, Roelants A, Delcour JA (1999) Fractionation-reconstitution experiments provide insight into the role of endoxylanases in bread-making. J Agric Food Chem 47:1870–1877

    Article  PubMed  CAS  Google Scholar 

  • Courtin CM, Gelders GG, Delcour JA (2001) Use of two endoxylanases with different substrate selectivity for understanding arabinoxylan functionality in wheat flour breadmaking. Cereal Chem 78:564–571

    Article  CAS  Google Scholar 

  • Coutinho PM, Henrissat B (1999) Carbohydrate-active enzymes: an integrated database approach. In: Gilbert HJ, Davies GJ, Henrissat B, Svensson B (eds) Recent advances in carbohydrate bioengineering. The Royal Society, Cambridge, pp 3–12

    Google Scholar 

  • Davies GJ, Wilson KS, Henrissat B (1997) Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem J 321:557–559

    PubMed  CAS  Google Scholar 

  • Delcour JA, VanWin H, Grobet PJ (1999) Distribution and structural variation of arabinoxylans in common wheat mill streams. J Agric Food Chem 47:271–275

    Article  PubMed  CAS  Google Scholar 

  • De Vos D, Collins T, Nerinckx W, Savvides SN, Claeyssens M, Gerday C, Feller G, Van Beeumen J (2006) Oligosaccharide binding in family 8 glycosidases: crystal structures of active-site mutants of the beta-1,4-xylanase pXyl from Pseudoaltermonas haloplanktis TAH3a in complex with substrate and product. Biochemistry 45:4797–4807

    Article  PubMed  CAS  Google Scholar 

  • Elliott GO, McLauchlan WR, Williamson G, Kroon PA (2003) A wheat xylanase inhibitor protein (XIP-I) accumulates in the grain and has homologues in other cereals. J Cereal Sci 37:187–194

    Article  CAS  Google Scholar 

  • Fierens K, Geudens N, Brijs K, Courtin CM, Gebruers K, Robben J, Van Campenhout S, Volckaert G, Delcour JA (2004) High-level expression, purification, and characterization of recombinant wheat xylanase inhibitor TAXI-I secreted by the yeast Pichia pastoris. Protein Expr Purif 37:39–46

    Article  PubMed  CAS  Google Scholar 

  • Fierens E, Rombouts S, Gebruers K, Goesaert H, Brijs K, Beaugrand J, Volckaert G, Van Campenhout S, Proost P, Courtin CM, Delcour JA (2007) TLXI, a novel type of xylanase inhibitor from wheat (Triticum aestivum) belonging to the thaumatin family. Biochem J 403:583–591

    Article  PubMed  CAS  Google Scholar 

  • Fierens E, Gebruers K, Courtin CM, Delcour JA (2008) Xylanase inhibitors bind to nonstarch polysaccharides. J Agric Food Chem 56:564–570

    Article  PubMed  CAS  Google Scholar 

  • Flatman R, McLauchlan WR, Juge N, Furniss C, Berrin JG, Hughes RK, Manzanares P, Ladbury JE, O′Brien R, Williamson G (2002) Interactions defining the specificity between fungal xylanases and the xylanase-inhibiting protein XIP-I from wheat. Biochem J 365:773–781

    PubMed  CAS  Google Scholar 

  • Frederix SA, Courtin CM, Delcour JA (2003) Impact of xylanases with different substrate selectivity on gluten-starch separation of wheat flour. J Agric Food Chem 51:7338–7345

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto Z, Kuno A, Kaneko S, Kobayashi H, Kusakabe I, Mizuno H (2002) Crystal structures of the sugar complexes of Streptomyces olivaceoviridis E-86 xylanase: sugar binding structure of the family 13 carbohydrate binding module. J Mol Biol 316:65–78

    Article  PubMed  CAS  Google Scholar 

  • Furniss CS, Belshaw NJ, Alcocer MJ, Williamson G, Elliott GO, Gebruers K, Haigh NP, Fish NM, Kroon PA (2002) A family 11 xylanase from Penicillium funiculosum is strongly inhibited by three wheat xylanase inhibitors. Biochim Biophys Acta 1598:24–29

    PubMed  CAS  Google Scholar 

  • Furniss CS, Williamson G, Kroon PA (2005) The substrate specificity and susceptibility to wheat inhibitor proteins of Penicillium funiculosum xylanases from a commercial enzyme preparation. J Sci Food Agric 85:574–582

    Article  CAS  Google Scholar 

  • Gebruers K (2002) Endoxylanase inhibitors in wheat (Triticum aestivum L.): isolation, characterisation and use for endoxylanase purification. PhD dissertation, K.U. Leuven, Belgium

  • Gebruers K, Debyser W, Goesaert H, Proost P, Van Damme J, Delcour JA (2001) Triticum aestivum L. endoxylanase inhibitor (TAXI) consists of two inhibitors, TAXI I and TAXI II, with different specificities. Biochem J 353:239–244

    Article  PubMed  CAS  Google Scholar 

  • Gebruers K, Brijs K, Courtin CM, Fierens K, Goesaert H, Raedschlders G, Rabijns A, Robben J, Sansen S, Van Campenhout S, Volckaert G, Delcour J (2003) TAXI type xylanase inhibitors in cereals: occurrence structure and properties. In Courtin CM, Veraverbeke WS, Delcour JA (eds) Recent advances in enzymes grain processing, proceedings of the third european symposium on enzymes in grain processing. KULeuven, pp 193–201

  • Gebruers K, Brijs K, Courtin CM, Fierens K, Goesaert H, Rabijns A, Raedschelders G, Robben J, Sansen S, Sørensen JF, Van Campenhout S, Delcour JA (2004) Properties of TAXI-type endoxylanase inhibitors. Biochim Biophys Acta 1696:213–221

    PubMed  CAS  Google Scholar 

  • Gebruers K, Courtin CM, Moers K, Noots I, Trogh I, Delcour JA (2005) The bread-making functionalities of two Aspergillus niger endoxylanases are strongly dictated by their inhibitor sensitivities. Enzyme Microb Technol 36:417–425

    Article  CAS  Google Scholar 

  • Goesaert H, Elliott G, Kroon PA, Gebruers K, Courtin CM, Robben J, Delcour JA, Juge N (2004) Occurrence of proteinaceous endoxylanase inhibitors in cereals. Biochim Biophys Acta 1696:193–202

    PubMed  CAS  Google Scholar 

  • Gosalbes MJ, Pérez-González JA, González R, Navarro A (1991) Two beta-glycanase genes are clustered in Bacillus polymyxa: molecular cloning, expression, and sequence analysis of genes encoding a xylanase and an endo-beta-(1,3)-(1,4)-glucanase. J Bacteriol 173:7705–7710

    PubMed  CAS  Google Scholar 

  • Gruppen H, Hamer RJ, Voragen AGJ (1992a) Water-unextractable cell-wall material from wheat-flour.1. Extraction of polymers with alkali. J Cereal Sci 16:41–51

    CAS  Google Scholar 

  • Gruppen H, Hamer RJ, Voragen AGJ (1992b) Water-unextractable cell-wall material from wheat-flour. 2. Fractionation of alkali-extracted polymers and comparison with water-extractable arabinoxylans. J Cereal Sci 16:53–67

    Article  CAS  Google Scholar 

  • Gruppen H, Kormelink FJM, Voragen AGJ (1993a) Water-unextractable cell wall material from wheat flour. 3. A structural model for arabinoxylans. J Cereal Sci 18:111–128

    Article  CAS  Google Scholar 

  • Gruppen H, Kormelink FJM, Voragen AGJ (1993b) Enzymic degradation of water-unextractable cell wall material and arabinoxylans from wheat flour. J Cereal Sci 18:129–143

    Article  CAS  Google Scholar 

  • Harris GW, Jenkins JA, Connerton I, Cummings N, Lo Leggio L, Scott M, Hazlewood GP, Laurie JI, Gilbert HJ, Pickersgill RW (1994) Structure of the catalytic core of the family F xylanase from Pseudomonas fluorescens and identification of the xylopentaose-binding sites. Structure 2:1107–1116

    Article  PubMed  CAS  Google Scholar 

  • Ingelbrecht JA, Moers K, Abecassis J, Rouau X, Delcour JA (2001) Influence of arabinoxylans and endoxylanases on pasta processing and quality. Production of high-quality pasta with increased levels of soluble fiber. Cereal Chem 78:721–729

    Article  CAS  Google Scholar 

  • Izydorczyk MS, Biliaderis CG (1995) Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohydr Polym 28:33–48

    Article  CAS  Google Scholar 

  • Janis J, Hakanpaa J, Hakulinen N, Ibatullin FM, Hoxha A, Derrick PJ, Rouvinen J, Vainiotalo P (2005) Determination of thioxylo-oligosaccharide binding to family 11 xylanases using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and X-ray crystallography. FEBS J 272:2317–2333

    Article  PubMed  CAS  Google Scholar 

  • Juge N, Delcour JA (2006) Xylanase inhibitors: structure, function and evolution. Curr Enzyme Inhib 2:29–35

    Article  CAS  Google Scholar 

  • Juge N, Payan F, Williamson G (2004) XIP-I, a xylanase inhibitor protein from wheat: a novel protein function. Biochem Biophys Acta 1696:203–211

    PubMed  CAS  Google Scholar 

  • Kittur FS, Mangala SL, Rus′d AA, Kitaoka M, Tsujibo H, Hayashi K (2003) Fusion of family 2b carbohydrate-binding module increases the catalytic activity of a xylanase from Thermotoga maritima to soluble xylan. FEBS Lett 549:147–151

    Article  PubMed  CAS  Google Scholar 

  • Kleywegt GJ, Zou JY, Divne C, Davies GJ, Sinning I, Stâhlberg J, Reinikainen T, Srisodsuk M, Teeri TT, Jones TA (1997) The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 A resolution, and a comparison with related enzymes. J Mol Biol 272:383–397

    Article  PubMed  CAS  Google Scholar 

  • Kormelink FJ, Gruppen H, Viëtor RJ, Voragen AG (1993a) Mode of action of the xylan-degrading enzymes from Aspergillus awamori on alkali-extractable cereal arabinoxylans. Carbohydr Res 249:355–367

    Article  PubMed  CAS  Google Scholar 

  • Kormelink FJ, Hoffmann RA, Gruppen H, Voragen AG, Kamerling JP, Vliegenthart JF (1993b) Characterisation by 1H NMR spectroscopy of oligosaccharides derived from alkali-extractable wheat-flour arabinoxylan by digestion with endo-(1,4)-beta-d-xylanase III from Aspergillus awamori. Carbohydr Res 249:369–382

    Article  PubMed  CAS  Google Scholar 

  • Larson SB, Day J, de la Rosa APB, Keen NT, McPherson A (2003) First crystallographic structure of a xylanase from glycoside hydrolase family 5: implications for catalysis. Biochemistry 42:8411–8422

    Article  PubMed  CAS  Google Scholar 

  • Ludwiczek ML, Heller M, Kantner T, McIntosh LP (2007) A secondary xylan-binding site enhances the catalytic activity of a single-domain family 11 glycoside hydrolase. J Mol Biol 373:337–354

    Article  PubMed  CAS  Google Scholar 

  • Mamo G, Hatti-Kaul R, Mattiasson B (2007) Fusion of carbohydrate binding modules from Thermotoga neapolitana with a family 10 xylanase from Bacillus halodurans. Extremophiles 11:169–177

    Article  PubMed  CAS  Google Scholar 

  • Maslen SL, Goubet F, Adam A, Dupree P, Stephens E (2007) Structure elucidation of arabinoxylan isomers by normal phase HPLC-MALDI-TOF/TOF-MS/MS. Carbohydr Res 342:724–735

    Article  PubMed  CAS  Google Scholar 

  • Moers K, Celus I, Brijs K, Courtin CM, Delcour JA (2005) Endoxylanase substrate selectivity determines degradation of wheat water-extractable and water-unextractable arabinoxylan. Carbohydr Res 340:1319–1327

    Article  PubMed  CAS  Google Scholar 

  • Moers K, Bourgois T, Rombouts S, Beliën T, Van Campenhout S, Volckaert G, Robben J, Brijs K, Delcour JA, Courtin CM (2007) Alteration of Bacillus subtilis XynA endoxylanase substrate selectivity by site-directed mutagenesis. Enzyme Microb Technol 41:85–91

    Article  CAS  Google Scholar 

  • Nurizzo D, Turkenburg JP, Charnock SJ, Roberts SM, Dodson EJ, McKie VA, Taylor EJ, Gilbert HJ, Davies GJ (2002) Cellvibrio japonicus alpha-l-arabinanase 43A has a novel five-blade beta-propeller fold. Nat Struct Biol 9:665–668

    Article  PubMed  CAS  Google Scholar 

  • Ordaz-Ortiz JJ, Saulnier L (2005) Structural variability of arabinoxylans from wheat flour. Comparison of water-extractable and xylanase-extractable arabinoxylans. J Cereal Sci 42:119–125

    Article  CAS  Google Scholar 

  • Payan F, Leone P, Porciero S, Furniss C, Tahir T, Williamson G, Durand A, Manzanares P, Gilbert HJ, Juge N, Roussel A (2004) The dual nature of the wheat xylanase protein inhibitor XIP-I. J Biol Chem 279:36029–36037

    Article  PubMed  CAS  Google Scholar 

  • Pell G, Szabo L, Charnock SJ, Xie H, Gloster TM, Davies GJ, Gilbert HJ (2004) Structural and biochemical analysis of Cellvibrio japonicus xylanase 10C: how variation in substrate-binding cleft influences the catalytic profile of family GH-10 xylanases. J Biol Chem 279:11777–11788

    Article  PubMed  CAS  Google Scholar 

  • Raedschelders G, Fierens K, Sansen S, Rombouts S, Gebruers K, Robben J, Rabijns A, Courtin CM, Delcour JA, Van Campenhout S, Volckaert G (2005) Molecular identification of wheat endoxylanase inhibitor TAXI-II and the determinants of its inhibition specificity. Biochem Biophys Res Commun 335:512–522

    Article  PubMed  CAS  Google Scholar 

  • Rouau X, Daviet S, Tahir T, Cherel B, Saulnier L (2006) Effect of the proteinaceous wheat xylanase inhibitor XIP-I on the performance of an Aspergillus niger xylanase in bread making. J Sci Food Agric 86:1604–1609

    Article  CAS  Google Scholar 

  • Sancho AI, Faulds CB, Svensson B, Bartolomé B, Williamson G, Juge N (2003) Cross-inhibitory activity of cereal protein inhibitors against alpha-amylases and xylanases. Biochim Biophys Acta 1650:136–144

    PubMed  CAS  Google Scholar 

  • Sansen S, De Ranter CJ, Gebruers K, Brijs K, Courtin CM, Delcour JA, Rabijns A (2004) Structural basis for inhibition of Aspergillus niger xylanase by Triticum aestivum xylanase inhibitor-I. J Biol Chem 279:36022–36028

    Article  PubMed  CAS  Google Scholar 

  • Saulnier L, Sado PE, Branlard G, Charmet G, Guillon F (2007) Wheat arabinoxylans: exploiting variation in amount and composition to develop enhanced varieties. J Cereal Sci 46:261–281

    Article  CAS  Google Scholar 

  • Schmidt A, Schlacher A, Steiner W, Schwab H, Kratky C (1998) Structure of the xylanase from Penicillium simplicissimum. Protein Sci 7:2081–2088

    Article  PubMed  CAS  Google Scholar 

  • Tahir TA, Berrin JG, Flatman R, Roussel A, Roepstorff P, Williamson G, Juge N (2002) Specific characterization of substrate and inhibitor binding sites of a glycosyl hydrolase family 11 xylanase from Aspergillus niger. J Biol Chem 277:44035–44043

    Article  PubMed  CAS  Google Scholar 

  • Törrönen A, Rouvinen J (1997) Structural and functional properties of low molecular weight endo-1,4-beta-xylanases. J Biotechnol 57:137–149

    Article  PubMed  Google Scholar 

  • Vandermarliere E, Bourgois TM, Rombouts S, Van Campenhout S, Volckaert G, Strelkov SV, Delcour JA, Rabijns A, Courtin CM (2008) Crystallographic analysis shows substrate binding at the −3 to +1 active site subsites and at the surface of glycoside hydrolase family 11 endo-1,4-beta-xylanases. Biochem J 410:71–79

    Article  PubMed  CAS  Google Scholar 

  • Van Petegem F, Collins T, Meuwis MA, Gerday C, Feller G, Van Beeumen J (2003) The structure of a cold-adapted family 8 xylanase at 1.3 A resolution. Structural adaptations to cold and investigation of the active site. J Biol Chem 278:7531–7539

    Article  PubMed  Google Scholar 

  • Vardakou M, Flint J, Christakopoulos P, Lewis RJ, Gilbert HJ, Murray JW (2005) A family 10 Thermoascus aurantiacus xylanase utilizes arabinose decorations of xylan as significant substrate specificity determinants. J Mol Biol 352:1060–1067

    Article  PubMed  CAS  Google Scholar 

  • Vardakou M, Dumon C, Murray JW, Christakopoulos P, Weiner DP, Juge N, Lewis RJ, Gilbert HJ, Flint JE (2008) Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases. J Mol Biol 375:1293–1305

    Article  PubMed  CAS  Google Scholar 

  • Vrsanská M, Kolenová K, Puchart V, Biely P (2007) Mode of action of glycoside hydrolase family 5 glucuronoxylan xylanohydrolase from Erwinia chrysanthemi. FEBS J 274:1666–1677

    Article  PubMed  CAS  Google Scholar 

  • Waldron KW, Faulds CB (2007) Cell wall polysaccharides: composition and structure. In: Kamerling J, Boons G-J, Lee Y, Suzuki A, Taniguchi N, Voragen AGJ (eds) Comprehensive glycoscience: analysis of glycans/polysaccharide functional properties, vol 2 Elsevier, The Netherlands, pp 181–201

    Google Scholar 

Download references

Acknowledgments

The authors thank the European Commission in the Communities 6th Framework Programme, Project Healthgrain (FOOD-CT-2005-514008) for funding. This publication reflects only authors’ views and the Community is not liable for any use that may be made of the information contained in this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Juge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berrin, JG., Juge, N. Factors affecting xylanase functionality in the degradation of arabinoxylans. Biotechnol Lett 30, 1139–1150 (2008). https://doi.org/10.1007/s10529-008-9669-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-008-9669-6

Keywords

Navigation