Skip to main content
Log in

Analysis of global gene expression profiles to identify differentially expressed genes critical for embryo development in Brassica rapa

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Embryo development represents a crucial developmental period in the life cycle of flowering plants. To gain insights into the genetic programs that control embryo development in Brassica rapa L., RNA sequencing technology was used to perform transcriptome profiling analysis of B. rapa developing embryos. The results generated 42,906,229 sequence reads aligned with 32,941 genes. In total, 27,760, 28,871, 28,384, and 25,653 genes were identified from embryos at globular, heart, early cotyledon, and mature developmental stages, respectively, and analysis between stages revealed a subset of stage-specific genes. We next investigated 9,884 differentially expressed genes with more than fivefold changes in expression and false discovery rate ≤0.001 from three adjacent-stage comparisons; 1,514, 3,831, and 6,633 genes were detected between globular and heart stage embryo libraries, heart stage and early cotyledon stage, and early cotyledon and mature stage, respectively. Large numbers of genes related to cellular process, metabolism process, response to stimulus, and biological process were expressed during the early and middle stages of embryo development. Fatty acid biosynthesis, biosynthesis of secondary metabolites, and photosynthesis-related genes were expressed predominantly in embryos at the middle stage. Genes for lipid metabolism and storage proteins were highly expressed in the middle and late stages of embryo development. We also identified 911 transcription factor genes that show differential expression across embryo developmental stages. These results increase our understanding of the complex molecular and cellular events during embryo development in B. rapa and provide a foundation for future studies on other oilseed crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh YS, Amasino R, Scheres B (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:109–120

    Article  PubMed  CAS  Google Scholar 

  • Basnet RK, Moreno-Pachon N, Lin K, Bucher J, Visser RG, Maliepaard C, Bonnema G (2013) Genome-wide analysis of coordinated transcript abundance during seed development in different Brassica rapa morphotypes. BMC Genomics 14:840

    Article  PubMed  PubMed Central  Google Scholar 

  • Belmonte MF, Kirkbride RC, Stone SL, Pelletiera JM, Bui AQ, Yeung EC, Hashimoto M, Fei J, Haradaa CM, Munoz MD, Le BH, Drews GN, Brady SM, Goldberg RB, Harada JJ (2013) Comprehensive developmental profiles of gene activity in regions and subregions of the Arabidopsis seed. Proc Natl Acad Sci USA 110:E435–E444

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  • Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu CM, van Lammeren AA, Miki BL, Custers JB, Campagne MM (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bowman JL, Eshed Y (2000) Formation and maintenance of the shoot apical meristem. Trends Plant Sci 5:110–115

    Article  PubMed  CAS  Google Scholar 

  • Braybrook SA, Harada JJ (2008) LECs go crazy in embryo development. Trends Plant Sci 13:624–630

    Article  PubMed  CAS  Google Scholar 

  • Carmell MA, XuanZ Zhang MQ, Hannon GJ (2002) The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Gene Dev 16:2733–2742

    Article  PubMed  CAS  Google Scholar 

  • Cheng ZJ, Zhao XY, Shao XX, Wang F, Zhou C, Liu YG, Zhang Y, Zhang XS (2014) Abscisic acid regulates early seed development in Arabidopsis by ABI5-mediated transcription of SHORT HYPOCOTYL UNDER BLUE1. Plant Cell 26:1053–1068

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Deng W, Chen G, Peng F, Truksa M, Snyder CL, Weselake RJ (2012) Transparent testa16 plays multiple roles in plant development and is involved in lipid synthesis and embryo development in canola. Plant Physiol 160:978–989

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dong J, Keller WA, Yan W, Georges F (2004) Gene expression at early stages of Brassica napus seed development as revealed by transcript profiling of seed-abundant cDNAs. Planta 218:483–491

    Article  PubMed  CAS  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    Article  PubMed  CAS  Google Scholar 

  • Fukushima K, Hasebe M (2014) Adaxial-abaxial polarity: the developmental basis of leaf shape diversity. Genesis 52:1–18

    Article  PubMed  Google Scholar 

  • Gao Y, Xu H, Shen YY, Wang JB (2013) Transcriptomic analysis of rice (Oryza sativa) endosperm using the RNA-Seq technique. Plant Mol Biol 81:363–378

    Article  PubMed  CAS  Google Scholar 

  • Girin T, Stephenson P, Goldsack CM, Kempin SA, Perez A, Pires N, Sparrow PA, Wood TA, Yanofsky MF, Ostergaard L (2010) Brassicaceae INDEHISCENT genes specify valve margin cell fate and repress replum formation. Plant J 63:329–338

    Article  PubMed  CAS  Google Scholar 

  • Horstman A, Willemsen V, Boutilier K, Heidstra R (2014) AINTEGUMENTA-LIKE proteins: hubs in a plethora of networks. Trends Plant Sci 19:146–157

    Article  PubMed  CAS  Google Scholar 

  • Izhaki A, Bowman JL (2007) KANADI and class III HD-Zip gene families regulate embryo patterning and modulate auxin flow during embryogenesis in Arabidopsis. Plant Cell 19:495–508

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jia H, Suzuki M, McCarty DR (2014) Regulation of the seed to seedling developmental phase transition by the LAFL and VAL transcription factor networks. Dev Biol 3:135–145

    CAS  Google Scholar 

  • Joliveta P, Boularda C, Bellamyb A, Valotc B, d’Andréaa S, Zivyc M, Nesib N, Chardota T (2011) Oil body proteins sequentially accumulate throughout seed development in Brassica napus. J Plant Physiol 168:2015–2020

    Article  Google Scholar 

  • Kim JH, Lee BH (2006) GROWTH-REGULATING FACTOR4 of Arabidopsis thaliana is required for development of leaves, cotyledons, and shoot apical meristem. J Plant Biol 49:463–468

    Article  CAS  Google Scholar 

  • Koyama T, Furutani M, Tasaka M, Ohme-Takagi M (2007) TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis. Plant Cell 19:473–484

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lau S, Slane D, Herud O, Kong J, Jurgens G (2012) Early embryogenesis in flowering plants: setting up the basic body pattern. Annu Rev Plant Biol 63:483–506

    Article  PubMed  CAS  Google Scholar 

  • Le BH, Cheng C, Bui AQ, Wameister JA, Henry KF, Pelletier J, Kwong L, Belmonte M, Kirkbride R, Horvath S, Drews GN, Fischer RL, Okamuro JK, Harada JJ, Goldberg RB (2010) Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proc Natl Acad Sci USA 170:8063–8070

    Article  Google Scholar 

  • Li WL, Zhao Q, Tao P, Wang JB (2011) Identification of genes differentially expressed during embryogenesis in Brassica campestris L. Acta Physiol Plant 34:669–681

    Article  Google Scholar 

  • Liu J, Hua W, Yang HL, Zhan GM, Li RJ, Deng LB, Wang XF, Liu GH, Wang HZ (2012) The BnGRF2 gene (GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis. J Exp Bot 63:3727–3740

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu WX, Liu HL, Qu LQ (2013) Embryo-specific expression of soybean oleosin altered oil body morphogenesis and increased lipid content in transgenic rice seeds. Theor Appl Genet 126:2289–2297

    Article  PubMed  CAS  Google Scholar 

  • Liu SY, Liu YM, Yang XH, Tong CB, Edwards D et al (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Genet 5:3930

    Google Scholar 

  • Lu X, Chen D, Shu D, Zhang Z, Wang W, Klukas C, Chen LL, Fan Y, Chen M, Zhang C (2013) The differential transcription network between embryo and endosperm in the early developing maize seed. Plant Physiol 162:440–455

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Machida Y, Fukaki H, Araki T (2013) Plant meristems and organogenesis: the new era of plant developmental research. Plant Cell Physiol 54:295–301

    Article  PubMed  CAS  Google Scholar 

  • Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y (2008) RNA-Seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res 18:1509–1517

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mendes A, Kelly AA, Erp VH, Shaw E, Powers SJ, Kurup S, Eastmond PJ (2013) bZIP67 regulates the omega-3 fatty acid content of Arabidopsis seed oil by activating FATTY ACID DESATURASE3. Plant Cell 25:3104–3116

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Miquel M, Trigui G, d’Andréa S, Kelemen Z, Baud S, Berger A, Deruyffelaere C, Trubuil A, Lepiniec L, Dubreucq B (2014) Specialization of oleosins in oil body dynamics during seed development in Arabidopsis seeds. Plant Physiol 164:1866–1878

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  PubMed  CAS  Google Scholar 

  • Mouchel CF, Osmont KS, Hardtke CS (2006) BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth. Nature 443:458–461

    Article  PubMed  CAS  Google Scholar 

  • Mun JH, Yu HJ, Shin JY, Oh M, Hwang HJ, Chung H (2012) Auxin response factor gene family in Brassica rapa: genomic organization, divergence, expression, and evolution. Mol Genet Genomics 287:765–784

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ouakfaoui SE, Schnell J, Abdeen A, Colville A, Labbé H, Han S, Baum B, Laberge S, Miki B (2010) Control of somatic embryogenesis and embryo development by AP2 transcription factors. Plant Mol Biol 74:313–326

    Article  PubMed  PubMed Central  Google Scholar 

  • Park S, Harada JJ (2008) Arabidopsis embryogenesis. Methods Mol Biol 427:3–16

    Article  PubMed  CAS  Google Scholar 

  • Perilli S, Di Mambro R, Sabatini S (2012) Growth and development of the root apical meristem. Curr Opin Plant Biol 15:17–23

    Article  PubMed  CAS  Google Scholar 

  • Rademacher EH, Lokerse AS, Schlereth A, Llavata-Peris CI, Bayer M, Kientz M, Rios AF, Borst JW, Lukowitz W, Jürgens G, Weijers D (2012) Different auxin response machineries control distinct cell fates in the early plant embryo. Dev Cell 22:211–222

    Article  PubMed  CAS  Google Scholar 

  • Santos-Mendoza M, Dubreucq B, Baud S, Parcy F, Caboche M, Lepiniec L (2008) Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis. Plant J 54:608–620

    Article  PubMed  CAS  Google Scholar 

  • Spencer MWB, Grene R, Lindsey K (2007) Transcriptional profiling of the Arabidopsis embryo. Plant Physiol 143:924–940

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sreenivasulu N, Wobus U (2013) Seed-development programs: a systems biology-based comparison between dicots and monocots. Annu Rev Plant Biol 64:189–217

    Article  PubMed  CAS  Google Scholar 

  • To A, Joubes J, Barthole G, Lecureuil A, Scagnelli A, Jasinski S, Lepiniec L, Baud S (2012) WRINKLED transcription factors orchestrate tissue-specific regulation of fatty acid biosynthesis in Arabidopsis. Plant Cell 24:5007–5023

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tong CB, Wang XW, Yu JY, Wu J, Li WS, Huang JY, Dong CH, Hua W, Liu SY (2013) Comprehensive analysis of RNA-seq data reveals the complexity of the transcriptome in Brassica rapa. BMC Genomics 14:689

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Troncoso-Ponce MA, Kilaru A, Cao X, Durrett TP, Fan J, Jensen JK, Thrower NA, Pauly M, Wilkerson C, Ohlrogge JB (2011) Comparative deep transcriptional profiling of four developing oilseeds. Plant J 68:1014–1027

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vanstraelen M, Benkova E (2012) Hormonal interactions in the regulation of plant development. Annu Rev Cell Dev Biol 28:463–487

    Article  PubMed  CAS  Google Scholar 

  • Venglat P, Xiang D, Yang H, Wan L, Tibiche C, Ross A, Wang E, Selvaraj G, Datla R (2013) Gene expression profiles during embryo development in Brassica napus. Plant Breed 132:514–522

    CAS  Google Scholar 

  • Venglat P, Xiang D, Wang E, Datla R (2014) Genomics of seed development: challenges and opportunities for genetic improvement of seed traits in crop plants. Biocatal Agric Biotechnol 3:24–30

    Google Scholar 

  • Wang LK, Feng ZX, Wang X, Wang XW, Zhang XG (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-Seq data. Bioinformatics 26:136–138

    Article  PubMed  Google Scholar 

  • Wang XW, Wang HZ, Wang J, Sun RF, Wu J, Liu SY et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Article  PubMed  CAS  Google Scholar 

  • Wendrich JR, Weijers D (2013) The Arabidopsis embryo as a miniature morphogenesis model. New Phytol 199:14–25

    Article  PubMed  Google Scholar 

  • Wildwater M, Campilho A, Perez-Perez JM, Heidstra R, Blilou I, Korthout H, Chatterjee J, Mariconti L, Gruissem W, Scheres B (2005) The RETINOBLASTOMA-RELATED gene regulates stem cell maintenance in Arabidopsis roots. Cell 123:1337–1349

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Lin W, Huang T, Poethig RS, Springer PS, Kerstetter RA (2008) KANADI1 regulates adaxial-abaxial polarity in Arabidopsis by directly repressing the transcription of ASYMMETRIC LEAVES2. Proc Natl Acad Sci USA 105:16392–16397

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xiang DQ, Venglat P, Tibiche C, Yang H, Risseeuw E, Cao YG, Basic V, Cloutier M, Keller W, Wang E, Selvaraj G, Datla R (2011) Genome-wide analysis reveals gene expression and metabolic network dynamics during embryo development in Arabidopsis. Plant Physiol 156:346–356

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xu H, Gao Y, Wang JB (2012) Transcriptomic analysis of rice (Oryza sativa) developing embryos using the RNA-Seq technique. PLoS ONE 7:e30646

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yang XY, Zhang XL, Yuan DJ, Jin FY, Zhang YC, Xu J (2012) Transcript profiling reveals complex auxin signalling pathway and transcription regulation involved in dedifferentiation and redifferentiation during somatic embryogenesis in cotton. BMC Plant Biol 12:110

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yu B, Gruber M, Khachatourians GG, Hegedus DD, Hannoufa A (2010) Gene expression profiling of developing Brassica napus seed in relation to changes in major storage compounds. Plant Sci 178:381–389

    Article  CAS  Google Scholar 

  • Zhao Q, Zou J, Meng JL, Mei SY, Wang JB (2013) Tracing the transcriptomic changes in synthetic trigenomic allohexaploids of Brassica using an RNA-Seq approach. PLoS ONE 8:e68883

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zheng Y, Ren N, Wang H, Stromberg AJ, Perry SE (2009) Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like 15. Plant Cell 21:2563–2577

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the State Key Basic Research and Development Plan of China (2013CB126900) and the National Natural Science Foundation of China (31370258).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbo Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11103_2014_238_MOESM1_ESM.tif

Supplemental Fig. 1 Percent of coverage representing the percentage of genes which expressed in each of the four stages mapped in the Brassica rapa L. genome. cDNA libraries are taken from Brassica rapa L. embryo at globular (G), heart (H), early cotyledon (E) and mature (M) stage, respectively. Gene coverage is the percentage of a gene covered by reads. It is equal to the ratio of the number of bases in a gene covered by unique mapping reads to the total number of bases in that gene. Visual result is showed as percentage of the amount of genes (TIFF 1348 kb)

11103_2014_238_MOESM2_ESM.tif

Supplemental Fig. 2 The result of qRT-PCR validation. It shows the expression pattern of nine random selected genes in validation. The columns denote the mean relative expression level; the bars denote the standard deviation (TIFF 772 kb)

11103_2014_238_MOESM3_ESM.doc

Supplemental Table 1 Primers used in the qRT-PCR analysis of gene expression in B. rapa embryo development. ACT2/7 is used as internal control to standardize the results (DOC 36 kb)

11103_2014_238_MOESM4_ESM.xls

Supplemental Table 2 A total of 32,941 genes derived from four cDNA libraries. The Gene ID, length of gene, RPKM of four stages and expression pattern are presented in this table (XLS 4609 kb)

11103_2014_238_MOESM5_ESM.xls

Supplemental Table 3 A list of KEGG pathways mapped by 22,060 genes in our result. Pathways over-represented by genes were for metabolic pathways, biosynthesis of secondary metabolites, plant-pathogen interaction, and plant hormone signal transduction with 4953, 2760, 1663, and 1540 members, respectively (XLS 34 kb)

11103_2014_238_MOESM6_ESM.xls

Supplemental Table 4 A table listing 9,884 differentially expressed genes (DEGs) during Brassica rapa L. embryo development. We use FDR ≤ 0.001 and the absolute value of log2Ratio ≥ 2.322 as the threshold to judge the significance of gene expression difference. The RPKM of four stages and expression pattern of DEGs are presented in the table (XLS 1308 kb)

11103_2014_238_MOESM7_ESM.xls

Supplemental Table 5 Differentially expressed genes between globular and heart stage embryos. FDR: false discovery rate. We used FDR ≤ 0.001 and the absolute value of log2Ratio ≥ 2.322 (fold change greater than five folds) as the threshold to judge the significance of gene expression difference (XLS 199 kb)

11103_2014_238_MOESM8_ESM.xls

Supplemental Table 6 Differentially expressed genes between heart and early cotyledon-stage embryos. FDR: false discovery rate. We used FDR ≤ 0.001 and the absolute value of log2Ratio ≥ 2.322 (fold change greater than five folds) as the threshold to judge the significance of gene expression difference (XLS 407 kb)

11103_2014_238_MOESM9_ESM.xls

Supplemental Table 7 Differentially expressed genes between early cotyledon and mature embryos. FDR: false discovery rate. We used FDR ≤ 0.001 and the absolute value of log2Ratio ≥ 2.322 (fold change greater than five folds) as the threshold to judge the significance of gene expression difference (XLS 1176 kb)

11103_2014_238_MOESM10_ESM.xls

Supplemental Table 8 GO enrichment analysis for 9,884 DEGs. GO term classifications: C, Cellular Component; F, Molecular Function; P, Biological Process. GO terms with P-value ≤0.05 were regarded as significantly enriched GO terms (XLS 53 kb)

11103_2014_238_MOESM11_ESM.xls

Supplemental Table 9 Overview of all 127 KEGG pathways of 9,884 DEGs. All DEGs are assigned to 127 KEGG pathways. The KEGG functional class, number, RPKM of four stages and expression type are also presented in this table (XLS 50 kb)

11103_2014_238_MOESM12_ESM.xls

Supplemental Table 10 The detail of all 237 branch pathways in 35 MapMan major pathways. The MapMan functional class, number, RPKM of four stages and expression type are presented in the table (XLS 4073 kb)

11103_2014_238_MOESM13_ESM.xls

Supplemental Table 11 A list of putative transcription factor (TF) genes in our results. We queried Brassica rapa L. transcription factor genes in the Plant Transcription Factor Database (http://planttfda.cbi.edu.cn/). All 57 transcription factor (TF) gene families were found in the result. 2,502 putative TF genes are identified in 32,941 genes. Of the 2,502 putative TFs, 911 genes which showed significantly differential expression of four stages are marked by *. The TF gene family name, number, RPKM, GO function annotation of TF family’s members are presented in the table (XLS 551 kb)

11103_2014_238_MOESM14_ESM.xls

Supplemental Table 12 A summary of 57 transcription factor (TF) gene families differentially expressed during B. rapa embryo development. The TF gene family name, number, RPKM, expression pattern and expression pattern of TF family’s members are presented in the table (XLS 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Peng, L., Wu, Y. et al. Analysis of global gene expression profiles to identify differentially expressed genes critical for embryo development in Brassica rapa . Plant Mol Biol 86, 425–442 (2014). https://doi.org/10.1007/s11103-014-0238-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-014-0238-1

Keywords

Navigation