Skip to main content
Log in

Brassica villosa, a system for studying non-glandular trichomes and genes in the Brassicas

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Brassica villosa is a wild Brassica C genome species with very dense trichome coverage and strong resistance to many insect pests of Brassica oilseeds and vegetables. Transcriptome analysis of hairy B. villosa leaves indicated higher expression of several important trichome initiation genes compared with glabrous B. napus leaves and consistent with the Arabidopsis model of trichome development. However, transcripts of the TRY inhibitory gene in hairy B. villosa were surprisingly high relative to B. napus and relative transcript levels of SAD2, EGL3, and several XIX genes were low, suggesting potential ancillary or less important trichome-related roles for these genes in Brassica species compared with Arabidopsis. Several antioxidant, calcium, non-calcium metal and secondary metabolite genes also showed differential expression between these two species. These coincided with accumulation of two alkaloid-like compounds, high levels of calcium, and other metals in B. villosa trichomes that are correlated with the known tolerance of B. villosa to high salt and the calcium-rich natural habitat of this wild species. This first time report on the isolation of large amounts of pure B. villosa trichomes, on trichome content, and on relative gene expression differences in an exceptionally hairy Brassica species compared with a glabrous species opens doors for the scientific community to understand trichome gene function in the Brassicas and highlights the potential of B. villosa as a trichome research platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrawal AA, Conner JK, Johnson MTJ, Wallsgrove R (2002) Ecological genetics of an induced plant defense against herbivores: additive genetic variance and costs of phenotypic plasticity. Evolution 56:2206–2213

    Article  PubMed  Google Scholar 

  • Agren J, Schemske DW (1992) Artificial selection on trichome number in Brassica rapa. Theor Appl Genet 83:673–678

    CAS  PubMed  Google Scholar 

  • Agren J, Schemske DW (1993) The cost of defense against herbivores: an experimental study of trichome production in Brassica rapa. Am Nat 141:338–350

    Article  CAS  PubMed  Google Scholar 

  • Agren J, Schemske DW (1994) Evolution of trichome number in a naturalized population of Brassica rapa. Am Nat 143:1–13

  • Aziz N, Paiva NL, May GD, Dixon RA (2005) Transcriptome analysis of alfalfa glandular trichomes. Planta 221:28–38

    Article  CAS  PubMed  Google Scholar 

  • Balkunde R, Pesch M, Hülskamp M (2010) Chapter ten trichome patterning in Arabidopsis thaliana: from genetic to molecular models. Curr Top Dev Biol 91:299–321

    Article  CAS  PubMed  Google Scholar 

  • Bax AD, Davis DG (1985) MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy. J Magn Reson 65:355–360

    CAS  Google Scholar 

  • Bax A, Subramanian S (1986) A proton-detected heteronuclear chemical-shift correlation experiment with improved resolution and sensitivity. J Magn Reson 86:346–357

    Google Scholar 

  • Bax A, Summers MF (1986) Proton and carbon-13 assignments from sensitivity-enhanced detection of heteronuclear multiple-bond connectivity by 2D multiple quantum NMR. J Am Chem Soc 108:2093–2094

    Article  CAS  Google Scholar 

  • Bax AD, Griffey RH, Hawkins BL (1983) Correlation of proton and nitrogen-15 chemical shifts by multiple quantum NMR. J Magn Reson 1969(55):301–315

    Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodological) 57:289–300

  • Bhalla PL, Singh MB (2008) Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea. Nat Protoc 3:181–189

    Article  CAS  PubMed  Google Scholar 

  • Bigger CB, Brasky KM, Lanford RE (2001) DNA microarray analysis of chimpanzee liver during acute resolving hepatitis C virus infection. J Virol 75:7059–7066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bouchereau A, Hamelin J, Lamour I, Renard M, Larher F (1991) Distribution of sinapine and related compounds in seeds of Brassica and allied genera. Phytochemistry 30:1873–1881

    Article  CAS  Google Scholar 

  • Bouyer D, Geier F, Kragler F, Schnittger A, Pesch M, Wester K, Balkunde R, Timmer J, Fleck C, Hülskamp M (2008) Two-dimensional patterning by a trapping/depletion mechanism: the role of TTG1 and GL3 in Arabidopsis trichome formation. PLoS Biol 6:e141

    Article  PubMed Central  PubMed  Google Scholar 

  • Branca F, Bas N, Artemyeva A, De Haro A, Maggioni L (2012) In progress activities of the Brassica Working Group of the European Cooperative Programme for Plant Genetic Resources (ECPGR). Joint 6th ISHS international symposium on Brassicas and 18th crucifer genetics workshop. Catania, Italy, pp 12–16

  • Braunschweiler L, Ernst RR (1983) Coherence transfer by isotropic mixing: application to proton correlation spectroscopy. J Magn Reson (1969) 53:521–528

    Article  CAS  Google Scholar 

  • Broadhurst CL, Chaney RL, Angle JS, Erbe EF, Maugel TK (2004) Nickel localization and response to increasing Ni soil levels in leaves of the Ni hyperaccumulator Alyssum murale. Plant Soil 265:225–242

    Article  CAS  Google Scholar 

  • Chismar J, Mondala T, Fox H, Roberts E, Langford D, Masliah E, Salomon D, Head S (2002) Analysis of result variability from high-density oligonucleotide arrays comparing same-species and cross-species hybridizations. Biotechniques 33:516–518, 520, 522 passim

  • Choi YE, Harada E (2005) Roles of calcium and cadmium on Cd-containing intra-and extracellular formation of Ca crystals in tobacco. J Plant Biol 48:113–119

    Article  CAS  Google Scholar 

  • Choi YE, Harada E, Wada M, Tsuboi H, Morita Y, Kusano T, Sano H (2001) Detoxification of cadmium in tobacco plants: formation and active excretion of crystals containing cadmium and calcium through trichomes. Planta 213:45–50

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • De Silva LD, Mansfield TA, McAinsh MR (2001) Changes in stomatal behaviour in the calcicole Leontodon hispidus due to the disruption by ozone of the regulation of apoplastic Ca2+ by trichomes. Planta 214:158–162

    Article  PubMed  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax AD (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  CAS  PubMed  Google Scholar 

  • Deng S, Yun G, Zhang Q, Xu HL, Cai Q (2004) Effect of false flax (Camelina sativa) on larval feeding and adult behavioral response of the diamondback moth (Plutella xylostella). Acta Entomol Sin 4:010

  • Diez-Tascón C, Keane OM, Wilson T, Zadissa A, Hyndman DL, Baird DB, McEwan JC, Crawford AM (2005) Microarray analysis of selection lines from outbred populations to identify genes involved with nematode parasite resistance in sheep. Physiol Genomics 21:59–69

    Article  PubMed  Google Scholar 

  • Digiuni S, Schellmann S, Geier F, Greese B, Pesch M, Wester K, Dartan B, Mach V, Srinivas BP, Timmer J (2008) A competitive complex formation mechanism underlies trichome patterning on Arabidopsis leaves. Mol Syst Biol 4:217–225

  • Donaldson L, Vuocolo T, Gray C, Strandberg Y, Reverter A, McWilliam S, Wang Y, Byrne K, Tellam R (2005) Construction and validation of a bovine innate immune microarray. BMC Genom 6:135

    Article  Google Scholar 

  • Esch JJ, Chen MA, Hillestad M, Marks MD (2004) Comparison of TRY and the closely related At1g01380 gene in controlling Arabidopsis trichome patterning. Plant J 40:860–869

    Article  CAS  PubMed  Google Scholar 

  • Facchini PJ (2001) Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annu Rev Plant Biol 52:29–66

    Article  CAS  Google Scholar 

  • Gaeta RT, Yoo S-Y, Pires J, Doerge R, Chen ZJ, Osborn TC (2009) Analysis of gene expression in resynthesized Brassica napus allopolyploids using Arabidopsis 70mer oligo microarrays. PLoS ONE 4:e4760

    Article  PubMed Central  PubMed  Google Scholar 

  • Gao Y, Gong X, Cao W, Zhao J, Fu L, Wang X, Schumaker KS, Guo Y (2008) SAD2 in Arabidopsis functions in trichome initiation through mediating GL3 function and regulating GL1, TTG1 and GL2 expression. J Integr Plant Biol 50:906–917

    Article  CAS  PubMed  Google Scholar 

  • Gilad Y, Borevitz J (2006) Using DNA microarrays to study natural variation. Curr Opin Genet Dev 16:553–558

    Article  CAS  PubMed  Google Scholar 

  • Girke T, Todd J, Ruuska S, White J, Benning C, Ohlrogge J (2000) Microarray analysis of developing Arabidopsis seeds. Plant Physiol 124:1570–1581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gomez Campo C, Tortosa ME (1974) The taxonomic and evolutionary significance of some juvenile characters in the Brassiceae. Bot J Linn Soc 69:105–124

    Article  Google Scholar 

  • Gomez-Campo C, Tortosa ME, Tewari I, Tewari JP (1999) Epicuticular wax columns in cultivated brassica species and in their close wild relatives. Ann Bot 83:515–519

    Article  Google Scholar 

  • Gresham D, Dunham MJ, Botstein D (2008) Comparing whole genomes using DNA microarrays. Nat Rev Genet 9:291–302

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez-Alcalá G, Gotor C, Meyer AJ, Fricker M, Vega JM, Romero LC (2000) Glutathione biosynthesis in Arabidopsis trichome cells. Proc Natl Acad Sci 97:11108–11113

    Article  PubMed Central  PubMed  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  CAS  PubMed  Google Scholar 

  • Henderson FG, Chen KK (1950) The pharmacology of lunarine, the alkaloid of Lunaria biennis. J Am Pharm Assoc 39:516–519

    Article  CAS  Google Scholar 

  • Horiguchi G, Nakayama H, Ishikawa N, Kubo M, Demura T, Fukuda H, Tsukaya H (2011) ANGUSTIFOLIA3 plays roles in adaxial/abaxial patterning and growth in leaf morphogenesis. Plant Cell Physiol 52:112–124

    Article  CAS  PubMed  Google Scholar 

  • Horvath DP, Schaffer R, West M, Wisman E (2003) Arabidopsis microarrays identify conserved and differentially expressed genes involved in shoot growth and development from distantly related plant species. Plant J 34:125–134

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Bhinu VS, Li X, Bashi ZD, Zhou R, Hannoufa A (2009) Pleiotropic changes in Arabidopsis f5h and sct mutants revealed by large-scale gene expression and metabolite analysis. Planta 230:1057–1069

    Article  CAS  PubMed  Google Scholar 

  • Huff JL, Hansen LM, Solnick JV (2004) Gastric transcription profile of Helicobacter pylori infection in the rhesus macaque. Infect Immun 72:5216–5226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Isaure MP, Fayard B, Sarret G, Pairis S, Bourguignon J (2006) Localization and chemical forms of cadmium in plant samples by combining analytical electron microscopy and X-ray spectromicroscopy. Spectrochim Acta, Part B 61:1242–1252

    Article  Google Scholar 

  • Ishida T, Kurata T, Okada K, Wada T (2008) A genetic regulatory network in the development of trichomes and root hairs. Annu Rev Plant Biol 59:365–386

    Article  CAS  PubMed  Google Scholar 

  • Jeener J, Meier BH, Bachmann P, Ernst RR (1979) Investigation of exchange processes by two dimensional NMR spectroscopy. J Chem Phys 71:4546

    Article  CAS  Google Scholar 

  • Johnson BA, Blevins RA (1994) NMR view: a computer program for the visualization and analysis of NMR data. J Biomol NMR 4:603–614

    Article  CAS  PubMed  Google Scholar 

  • Kang BH, Busse JS, Bednarek SY (2003) Members of the Arabidopsis dynamin-like gene family, ADL1, are essential for plant cytokinesis and polarized cell growth. The Plant Cell Online 15:899–913

    Article  CAS  Google Scholar 

  • Kift NB, Ellis PR, Tatchell GM, Pink DAC (2000) The influence of genetic background on resistance to the cabbage aphid (Brevicoryne brassicae) in kale (Brassica oleracea var. acephala). Ann Appl Biol 136:189–195

    Article  Google Scholar 

  • Kim JS, Jung HJ, Lee HJ, Kim K, Goh CH, Woo Y, Oh SH, Han YS, Kang H (2008) Glycine rich RNA binding protein 7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana. Plant J 55:455–466

    Article  CAS  PubMed  Google Scholar 

  • Kirik V, Simon M, Huelskamp M, Schiefelbein J (2004) The ENHANCER OF TRY AND CPC1 gene acts redundantly with TRIPTYCHON and CAPRICE in trichome and root hair cell patterning in Arabidopsis. Dev Biol 268:506–513

    Article  CAS  PubMed  Google Scholar 

  • Koona P, Jackai LEN (2004) The potential of pod-shaving in studies of the role of trichomes in Vigna resistance to the pod-bug Clavigralla tomentosicollis Stål (Hemiptera: Coreidae). Int J Trop Insect Sci 24:298–303

    Article  Google Scholar 

  • Küpper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84

    Article  PubMed  Google Scholar 

  • Küpper H, Lombi E, Zhao FJ, Wieshammer G, McGrath SP (2001) Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. J Exp Bot 52:2291–2300

    Article  PubMed  Google Scholar 

  • Kurata T, Ishida T, Kawabata-Awai C, Noguchi M, Hattori S, Sano R, Nagasaka R, Tominaga R, Koshino-Kimura Y, Kato T (2005) Cell-to-cell movement of the CAPRICE protein in Arabidopsis root epidermal cell differentiation. Development 132:5387–5398

    Article  CAS  PubMed  Google Scholar 

  • Lange BM, Wildung MR, Stauber EJ, Sanchez C, Pouchnik D, Croteau R (2000) Probing essential oil biosynthesis and secretion by functional evaluation of expressed sequence tags from mint glandular trichomes. Proc Natl Acad Sci 97:2934–2939

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee HS, Wang J, Tian L, Jiang H, Black MA, Madlung A, Watson B, Lukens L, Pires JC, Wang JJ (2004) Sensitivity of 70-mer oligonucleotides and cDNAs for microarray analysis of gene expression in Arabidopsis and its related species. Plant Biotechnol J 2:45–57

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Levin DA (1973) The role of trichomes in plant defense. Q Rev Biol 48:3–15

  • Liu R, Zhao J, Xiao Y, Meng J (2005) Identification of prior candidate genes for Sclerotinia local resistance in Brassica napus using Arabidopsis cDNA microarray and Brassica–Arabidopsis comparative mapping. Sci China, Ser C Life Sci 48:460–470

    Article  CAS  Google Scholar 

  • Mathur J (2006) Trichome cell morphogenesis in Arabidopsis: a continuum of cellular decisions. This review is one of a selection of papers published in the Special Issue on Plant Cell Biology. Botany 84:604–612

  • McNear DH Jr, Peltier E, Everhart J, Chaney RL, Sutton S, Newville M, Rivers M, Sparks DL (2005) Application of quantitative fluorescence and absorption-edge computed microtomography to image metal compartmentalization in Alyssum murale. Environ Sci Technol 39:2210–2218

    Article  CAS  PubMed  Google Scholar 

  • Moore S, Payton P, Wright M, Tanksley S, Giovannoni J (2005) Utilization of tomato microarrays for comparative gene expression analysis in the Solanaceae. J Exp Bot 56:2885–2895

    Article  CAS  PubMed  Google Scholar 

  • Mozes-Koch R, Gover O, Tanne E, Peretz Y, Maori E, Chernin L, Sela I (2012) Expression of an entire bacterial operon in plants. Plant Physiol 158:1883–1892

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nayidu NK, Kagale S, Taheri A, Withana-Gamage TS, Parkin IA, Sharpe AG, Gruber MY (2014) Comparison of five major trichome regulatory genes in Brassica villosa with Orthologues within the Brassicaceae. PLoS ONE 9:e95877

    Article  PubMed Central  PubMed  Google Scholar 

  • Ojangu EL, Tanner K, Pata P, Järve K, Holweg CL, Truve E, Paves H (2012) Myosins XI-K, XI-1, and XI-2 are required for development of pavement cells, trichomes, and stigmatic papillae in Arabidopsis. BMC Plant Biol 12:81

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oshlack A, Chabot AE, Smyth GK, Gilad Y (2007) Using DNA microarrays to study gene expression in closely related species. Bioinformatics 23:1235–1242

    Article  CAS  PubMed  Google Scholar 

  • Otting G, Wüthrich K (1989) Extended heteronuclear editing of 2D 1H NMR spectra of isotope-labeled proteins, using the X(w1, w2)-double-half-filter. J Magn Reson 85:586–594

    CAS  Google Scholar 

  • Palaniswamy P, Bodnaryk RP (1994) A wild Brassica from Sicily provides trichome-based resistance against flea beetles, Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae). Can Entomol 126:1119–1130

    Article  Google Scholar 

  • Paz-Ares J, Ghosal D, Wienand U, Peterson PA, Saedler H (1987) The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J 6:3553

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pesch M, Hülskamp M (2004) Creating a two-dimensional pattern de novo during Arabidopsis trichome and root hair initiation. Curr Opin Genet Dev 14:422–427

    Article  CAS  PubMed  Google Scholar 

  • Pesch M, Hülskamp M (2009) One, two, three… models for trichome patterning in Arabidopsis? Curr Opin Plant Biol 12:587–592

    Article  CAS  PubMed  Google Scholar 

  • Piantini U, Sorensen OW, Ernst RR (1982) Multiple quantum filters for elucidating NMR coupling networks. J Am Chem Soc 104:6800–6801

    Article  CAS  Google Scholar 

  • Ramsey AD, Ellis PR (1994) Resistance in wild Brassicas to the Cabbage white fly, Aleyrodes proletella ISHS Brassica symposium-IX crucifer genetics workshop 407, pp 507–514

  • Sallaud C, Giacalone C, Töpfer R, Goepfert S, Bakaher N, Rösti S, Tissier A (2012) Characterization of two genes for the biosynthesis of the labdane diterpene Z-abienol in tobacco (Nicotiana tabacum) glandular trichomes. Plant J 72:1–17

    Article  CAS  PubMed  Google Scholar 

  • Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schellmann S, Hulskamp M (2005) Epidermal differentiation: trichomes in Arabidopsis as a model system. Int J Dev Biol 49:579

    Article  PubMed  Google Scholar 

  • Scialabba A, Di Liberto C, Dell’Aquila A (1999) Salt-treatment integrated germination test in the evaluation of Brassica villosa subsp. Drepanensis seed quality. Seed Sci Technol 27:865–870

    Google Scholar 

  • Shi C, Thümmler F, Melchinger AE, Wenzel G, Lübberstedt T (2006) Comparison of transcript profiles between near-isogenic maize lines in association with SCMV resistance based on unigene-microarrays. Plant Sci 170:159–169

    Article  CAS  Google Scholar 

  • Singh SP, Sachan GC (1997) Effect of different temperatures and host plants on the developmental behaviour of mustard sawfly, Athalia proxima. Indian J Entomol 59:34–40

    Google Scholar 

  • Smyth G (2005) Limma: linear models for microarray data. Bioinform Comput Biol Solut R Bioconduct 2005:397–420

  • Snogerup S, Gustafsson M, Von Bothmer R (1990) Brassica sect. Brassica (Brassicaceae) I. Taxonomy and variation. Willdenowia 19:271–365

  • Taylor DC, Falk KC, Palmer CD, Hammerlindl J, Babic V, Mietkiewska E, Jadhav A, Marillia EF, Francis T, Hoffman T (2010) Brassica carinata—a new molecular farming platform for delivering bio-industrial oil feedstocks: case studies of genetic modifications to improve very long-chain fatty acid and oil content in seeds. Biofuels, Bioprod Biorefin 4:538–561

    Article  CAS  Google Scholar 

  • Teoh KH, Polichuk DR, Reed DW, Nowak G, Covello PS (2006) Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. FEBS Lett 580:1411–1416

    Article  CAS  PubMed  Google Scholar 

  • Tominaga R, Iwata M, Sano R, Inoue K, Okada K, Wada T (2008) Arabidopsis CAPRICE-LIKE MYB 3 (CPL3) controls endoreduplication and flowering development in addition to trichome and root hair formation. Development 135:1335–1345

    Article  CAS  PubMed  Google Scholar 

  • Traw BM, Dawson TE (2002) Differential induction of trichomes by three herbivores of black mustard. Oecologia 131:526–532

    Article  Google Scholar 

  • Trick M, Cheung F, Drou N, Fraser F, Lobenhofer EK, Hurban P, Magusin A, Town CD, Bancroft I (2009) A newly-developed community microarray resource for transcriptome profiling in Brassica species enables the confirmation of Brassica-specific expressed sequences. BMC Plant Biol 9:50

    Article  PubMed Central  PubMed  Google Scholar 

  • U (1935) N: Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

  • Vahey MT, Nau ME, Taubman M, Yalley-Ogunro J, Silvera P, Lewis MG (2003) Patterns of gene expression in peripheral blood mononuclear cells of rhesus macaques infected with SIVmac251 and exhibiting differential rates of disease progression. AIDS Res Hum Retrovir 19:369–387

    Article  CAS  PubMed  Google Scholar 

  • van Ooik T, Pausio S, Rantala MJ (2008) Direct effects of heavy metal pollution on the immune function of a geometrid moth, Epirrita autumnata. Chemosphere 71:1840–1844

    Article  PubMed  Google Scholar 

  • Velasco L, Goffman FD, Becker HC (1998) Variability for the fatty acid composition of the seed oil in a germplasm collection of the genus Brassica. Genet Resour Crop Evol 45:371–382

    Article  Google Scholar 

  • Velasco P, Soengas P, Vilar M, Cartea ME, del Rio M (2008) Comparison of glucosinolate profiles in leaf and seed tissues of different Brassica napus crops. J Am Soc Hortic Sci 133:551–558

    Google Scholar 

  • Wagner G, Wüthrich K (1982) Amide proton exchange and surface conformation of the basic pancreatic trypsin inhibitor in solution: studies with two-dimensional nuclear magnetic resonance. J Mol Biol 160:343–361

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Kwak S-H, Zeng Q, Ellis BE, Chen X-Y, Schiefelbein J, Chen J-G (2007) TRICHOMELESS1 regulates trichome patterning by suppressing GLABRA1 in Arabidopsis. Development 134:3873–3882

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Tian L, Aziz N, Broun P, Dai X, He J, King A, Zhao PX, Dixon RA (2008) Terpene biosynthesis in glandular trichomes of hop. Plant Physiol 148:1254–1266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Warwick S (2011) Brassicaceae in agriculture. In: Schmidt R, Bancroft I (eds) Genetics and genomics of the Brassicaceae, plant genetics and genomics crops and models 9. Springer Science + Business Media, LLC. doi:10.1007/978-1-4419-7118-0_2

  • Wester K, Digiuni S, Geier F, Timmer J, Fleck C, Hülskamp M (2009) Functional diversity of R3 single-repeat genes in trichome development. Development 136:1487–1496

    Article  CAS  PubMed  Google Scholar 

  • Wienkoop S, Zoeller D, Ebert B, Simon-Rosin U, Fisahn J, Glinski M, Weckwerth W (2004) Cell-specific protein profiling in Arabidopsis thaliana trichomes: identification of trichome-located proteins involved in sulfur metabolism and detoxification. Phytochemistry 65:1641–1649

    Article  CAS  PubMed  Google Scholar 

  • Wilson IW, Kennedy GC, Peacock JW, Dennis ES (2005) Microarray analysis reveals vegetative molecular phenotypes of Arabidopsis flowering-time mutants. Plant Cell Physiol 46:1190–1201

    Article  CAS  PubMed  Google Scholar 

  • Wink M (1992) Insect plant interactions. In: Bernays EA (ed) Insect plant interactions. CRC Press, Boca Raton

    Google Scholar 

  • Wink M (1993) The alkaloids. In: Cordell G (ed) The alkaloids. Academic Press, New York

    Google Scholar 

  • Zhang X, Oppenheimer DG (2004) A simple and efficient method for isolating trichomes for downstream analyses. Plant Cell Physiol 45:221–224

    Article  CAS  PubMed  Google Scholar 

  • Zhu T, Chang H-S, Schmeits J, Gil P, Shi L, Budworth P, Zou G, Chen X, Wang X (2001) Gene expression microarrays: improvements and applications towards agricultural gene discovery. J Assoc Lab Autom 6:95–98

    Article  CAS  Google Scholar 

  • Zimeri AM, Dhankher OP, McCaig B, Meagher RB (2005) The plant MT1 metallothioneins are stabilized by binding cadmiums and are required for cadmium tolerance and accumulation. Plant Mol Biol 58:839–855

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank K. Narayanan for assistance in B. villosa trichome preparation and Z. Baines of Plant Gene Resources Canada (Saskatoon) for investigating the conditions which promoted flowering in B. villosa. Dr. Angelina Morales and Dr. Branimir Gjetvaj are gratefully acknowledged for collection and analysis of ESI–MS spectra and photographic assistance, respectively. N. Nayidu and A. Taheri were recipients of NSERC Visiting Fellowships to a Canadian Government Laboratory. This research was supported by Grants from the Canola Council of Canada, the Western Canadian Canola Grower organizations, and funding from Agriculture and Agri-Food Canada.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Naghabushana K. Nayidu or Margaret Y. Gruber.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table S1. Q-PCR validation of microarray expression patterns. (DOCX 23 kb)

Supplementary Table S2. Heteronuclear NMR spectral data for compounds “a” and “b”. (DOCX 18 kb)

11103_2014_201_MOESM3_ESM.xlsx

Supplementary Table S3. Global differential transcript sets from young seedling leaves of B. villosa relative to B. napus. Data was collected using a custom-designed 95 K B. napus oligoarray detailed in (Trick, et al. 2009). (XLSX 359 kb)

Supplementary Figure S1. 1H and 13C NMR spectral plot for B. villosa alkaloid-like compound “a”. (TIFF 28 kb)

11103_2014_201_MOESM5_ESM.tif

Supplementary Figure S2. 1D 1H-NMR chemical shifts for compounds “a” and “b”. Arrows indicate the difference chemical shifts between compounds “a” and “b”. (TIFF 78 kb)

11103_2014_201_MOESM6_ESM.tif

Supplementary Figure S3. Q-PCR of 12 differentially expressed genes validating microarray expression datasets. A portion of this data is also found in Supplementary Table 1. A. Up-regulated genes. B. Down-regulated genes. (TIFF 77 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayidu, N.K., Tan, Y., Taheri, A. et al. Brassica villosa, a system for studying non-glandular trichomes and genes in the Brassicas. Plant Mol Biol 85, 519–539 (2014). https://doi.org/10.1007/s11103-014-0201-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-014-0201-1

Keywords

Navigation