Skip to main content
Log in

Poly(ADP-ribose)polymerases are involved in microhomology mediated back-up non-homologous end joining in Arabidopsis thaliana

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Besides the KU-dependent classical non-homologous end-joining (C-NHEJ) pathway, an alternative NHEJ pathway first identified in mammalian systems, which is often called the back-up NHEJ (B-NHEJ) pathway, was also found in plants. In mammalian systems PARP was found to be one of the essential components in B-NHEJ. Here we investigated whether PARP1 and PARP2 were also involved in B-NHEJ in Arabidopsis. To this end Arabidopsis parp1, parp2 and parp1parp2 (p1p2) mutants were isolated and functionally characterized. The p1p2 double mutant was crossed with the C-NHEJ ku80 mutant resulting in the parp1parp2ku80 (p1p2k80) triple mutant. As expected, because of their role in single strand break repair (SSBR) and base excision repair (BER), the p1p2 and p1p2k80 mutants were shown to be sensitive to treatment with the DNA damaging agent MMS. End-joining assays in cell-free leaf protein extracts of the different mutants using linear DNA substrates with different ends reflecting a variety of double strand breaks were performed. The results showed that compatible 5′-overhangs were accurately joined in all mutants, that KU80 protected the ends preventing the formation of large deletions and that PARP proteins were involved in microhomology mediated end joining (MMEJ), one of the characteristics of B-NHEJ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad A, Robinson AR, Duensing A, van Drunen E, Beverloo HB, Weisberg DB, Hasty P, Hoeijmakers JHJ, Niedernhofer LJ (2008) ERCC1-XPF endonuclease facilitates DNA double-strand break repair. Mol Cell Biol 28:5082–5092

    Article  PubMed  CAS  Google Scholar 

  • Alonso J, Stepanova A, Leisse T, Kim C (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Amé J-C, Rolli V, Schreiber V, Niedergang C, Apiou F, Decker P, Muller S, Höger T, Ménissier-de Murcia J, de Murcia G (1999) PARP-2, a novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. J Biol Chem 274:17860–17868

    Article  PubMed  Google Scholar 

  • Amé J-C, Spenlehauer C, de Murcia G (2004) The PARP superfamily. BioEssays 26:882–893

    Article  PubMed  Google Scholar 

  • Amor Y, Babiychuk E, Inze D, Levine A (1998) The involvement of poly(ADP-ribose) polymerase in the oxidative stress responses in plants. FEBS Lett 440:1–7

    Article  PubMed  CAS  Google Scholar 

  • Audebert M, Salles B, Calsou P (2004) Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J Biol Chem 279:55117–55126

    Article  PubMed  CAS  Google Scholar 

  • Babiychuk E, Cottrill PB, Storozhenko S, Fuangthong M, Chen Y, O’Farrell MK, Van Montagu M, Inzé D, Kushnir S (1998) Higher plants possess two structurally different poly(ADP-ribose) polymerases. Plant J 15:635–645

    Article  PubMed  CAS  Google Scholar 

  • Boehler C, Gauthier LR, Mortusewicz O, Biard DS, Saliou J-M, Bresson A, Sanglier-Cianferani S, Smith S, Schreiber V, Boussin F, Dantzer F (2011) Poly(ADP-ribose) polymerase 3 (PARP3), a newcomer in cellular response to DNA damage and mitotic progression. Proc Natl Acad Sci USA 108:2783–2788

    Article  PubMed  CAS  Google Scholar 

  • Bryant HE, Petermann E, Schultz N, Jemth A-S, Loseva O, Issaeva N, Johansson F, Fernandez S, McGlynn P, Helleday T (2009) PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination. EMBO J 28:2601–2615

    Article  PubMed  CAS  Google Scholar 

  • Bundock P, van Attikum H, Hooykaas P (2002) Increased telomere length and hypersensitivity to DNA damaging agents in an Arabidopsis KU70 mutant. Nucleic Acids Res 30:3395–3400

    Article  PubMed  CAS  Google Scholar 

  • Caldecott KW (2003) XRCC1 and DNA strand break repair. DNA Repair 2:955–969

    Article  PubMed  CAS  Google Scholar 

  • Charbonnel C, Gallego ME, White CI (2010) Xrcc1-dependent and Ku-dependent DNA double-strand break repair kinetics in Arabidopsis plants. Plant J 64:280–290

    Article  PubMed  CAS  Google Scholar 

  • Charbonnel C, Allain E, Gallego ME, White CI (2011) Kinetic analysis of DNA double-strand break repair pathways in Arabidopsis. DNA Repair 10:611–619

    Article  PubMed  CAS  Google Scholar 

  • Chen Y-M, Shall S, O’Farrell M (1994) Poly(ADP-ribose) polymerase in plant nuclei. Eur J Biochem 224:135–142

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Inamdar KV, Pfeiffer P, Feldmann E, Hannah MF, Yu Y, Lee JW, Zhou T, Lees-Miller SP, Povirk LF (2001) Accurate in vitro end joining of a DNA double strand break with partially cohesive 3′-overhangs and 3′-phosphoglycolate termini: effect of Ku on repair fidelity. J Biol Chem 276:24323–24330

    Article  PubMed  CAS  Google Scholar 

  • Cheng Q, Barboule N, Frit P, Gomez D, Bombarde O, Couderc B, Ren G-S, Salles B, Calsou P (2011) Ku counteracts mobilization of PARP1 and MRN in chromatin damaged with DNA double-strand breaks. Nucleic Acids Res 39:9605–9619

    Article  PubMed  CAS  Google Scholar 

  • De Block M, Verduyn C, De Brouwer D, Cornelissen M (2005) Poly(ADP-ribose) polymerase in plants affects energy homeostasis, cell death and stress tolerance. Plant J 41:95–106

    Article  PubMed  Google Scholar 

  • de Pater S, Caspers M, Kottenhagen M, Meima H, ter Stege R, de Vetten N (2006) Manipulation of starch granule size distribution in potato tubers by modulation of plastid division. Plant Biotech J 4:123–134

    Article  Google Scholar 

  • Dibiase SJ, Zeng Z-C, Chen R, Hyslop T, Curran WJ, Iliakis G (2000) DNA-dependent protein kinase stimulates an independently active, nonhomologous, end-joining apparatus. Cancer Res 60:1245–1253

    PubMed  CAS  Google Scholar 

  • Fattah F, Lee EH, Weisensel N, Wang Y, Lichter N, Hendrickson EA (2010) Ku regulates the non-homologous end joining pathway choice of DNA double-strand break repair in human somatic cells. PLoS Genet 6:e1000855

    Article  PubMed  Google Scholar 

  • Feldmann E, Schmiemann V, Goedecke W, Reichenberger S, Pfeiffer P (2000) DNA double-strand break repair in cell-free extracts from Ku80-deficient cells: implications for Ku serving as an alignment factor in non-homologous DNA end joining. Nucleic Acids Res 28:2585–2596

    Article  PubMed  CAS  Google Scholar 

  • Fidantsef AL, Mitchell DL, Britt AB (2000) The Arabidopsis UVH1 gene is a homolog of the yeast repair endonuclease RAD1. Plant Physiol 124:579–586

    Article  PubMed  CAS  Google Scholar 

  • Friesner J, Britt AB (2003) Ku80- and DNA ligase IV-deficient plants are sensitive to ionizing radiation and defective in T-DNA integration. Plant J 34:427–440

    Article  PubMed  CAS  Google Scholar 

  • Gallego ME, Bleuyard J-Y, Daoudal-Cotterell S, Jallut N, White CI (2003) Ku80 plays a role in non-homologous recombination but is not required for T-DNA integration in Arabidopsis. Plant J 35:557–565

    Article  PubMed  CAS  Google Scholar 

  • Gorbunova V, Levy AA (1997) Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Res 25:4650–4657

    Article  PubMed  CAS  Google Scholar 

  • Haber JE (2008) Alternative endings. Proc Natl Acad Sci USA 105:405–406

    Article  PubMed  CAS  Google Scholar 

  • Heacock M, Spangler E, Riha K, Puizina J, Shippen DE (2004) Molecular analysis of telomere fusions in Arabidopsis: multiple pathways for chromosome end-joining. EMBO J 23:2304–2313

    Article  PubMed  CAS  Google Scholar 

  • Hiom K (2010) Coping with DNA double strand breaks. DNA Repair 9:1256–1263

    Article  PubMed  CAS  Google Scholar 

  • Huefner ND, Mizuno Y, Weil CF, Korf I, Britt AB (2011) Breadth by depth: expanding our understanding of the repair of transposon-induced DNA double strand breaks via deep-sequencing. DNA Repair 10:1023–1033

    Article  PubMed  CAS  Google Scholar 

  • Iliakis G (2009) Backup pathways of NHEJ in cells of higher eukaryotes: cell cycle dependence. Radiother Onc 92:310–315

    Article  CAS  Google Scholar 

  • Jia Q, Bundock P, Hooykaas PJJ, de Pater S (2012) Agrobacterium tumefaciens T-DNA integration and gene-targeting in Arabidopsis thaliana non-homologous end-joining mutants. J Bot. doi:10.1155/2012/989272

    Google Scholar 

  • Katsura Y, Sasaki S, Sato M, Yamaoka K, Suzukawa K, Nagasawa T, Yokota J, Kohno T (2007) Involvement of Ku80 in microhomology-mediated end joining for DNA double-strand breaks in vivo. DNA Repair 6:639–648

    Article  PubMed  CAS  Google Scholar 

  • Kuhfittig-Kulle S, Feldmann E, Odersky A, Kuliczkowska A, Goedecke W, Eggert A, Pfeiffer P (2007) The mutagenic potential of non-homologous end joining in the absence of the NHEJ core factors Ku70/80, DNA-PKcs and XRCC4-LigIV. Mutagenesis 22:217–233

    Article  PubMed  CAS  Google Scholar 

  • Lepiniec L, Babiychuk E, Kushnir S, Van Montagu M, Inze M (1995) Characterization of an Arabidopsis thaliana cDNA homologue to animal poly(ADP-ribose) polymerase. FEBS Lett 364:103–108

    Article  PubMed  CAS  Google Scholar 

  • Li J, Vaidya M, White C, Vainstein A, Citovsky V, Tzfira T (2005) Involvement of KU80 in T-DNA integration in plant cells. Proc Natl Acad Sci USA 102:19231–19236

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Rosso MG, Viehoever P, Weisshaar B (2007) GABI-Kat SimpleSearch: an Arabidopsis thaliana T-DNA mutant database with detailed information for confirmed insertions. Nucleic Acids Res 35:874–878

    Article  Google Scholar 

  • Liang L, Deng L, Nguyen SC, Zhao X, Maulion CD, Shao C, Tischfield JA (2008) Human DNA ligases I and III, but not ligase IV, are required for microhomology-mediated end joining of DNA double-strand breaks. Nucleic Acids Res 36:3297–3310

    Article  PubMed  CAS  Google Scholar 

  • Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end joining pathway. Ann Rev Biochem 3:181–211

    Article  Google Scholar 

  • Lloyd AH, Wang D, Timmis JN (2012) Single molecule PCR reveals similar patterns of non-homologous DSB repair in tobacco and arabidopsis. PLoS ONE 7:e32255

    Article  PubMed  CAS  Google Scholar 

  • Mansour WY, Rhein T, Dahm-Daphi J (2010) The alternative end-joining pathway for repair of DNA double-strand breaks requires PARP1 but is not dependent upon microhomologies. Nucleic Acids Res 38:6065–6077

    Article  PubMed  CAS  Google Scholar 

  • Masaoka A, Horton JK, Beard WA, Wilson SH (2009) DNA polymerase β and PARP activities in base excision repair in living cells. DNA Repair 8:1290–1299

    Article  PubMed  CAS  Google Scholar 

  • McVey M, Lee SE (2008) MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet 24:529–538

    Article  PubMed  CAS  Google Scholar 

  • Menke M, Chen I-P, Angelis K, Schubert I (2001) DNA damage and repair in Arabidopsis thaliana as measured by the comet assay after treatment with different classes of genotoxins. Mut Res 493:87–93

    Article  CAS  Google Scholar 

  • Mladenov E, Iliakis G (2011) Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways. Mut Res 711:61–72

    Article  CAS  Google Scholar 

  • Nussenzweig A, Nussenzweig MC (2007) A backup DNA repair pathway moves to the forefront. Cell 131:223–225

    Article  PubMed  CAS  Google Scholar 

  • O’Connor PJ (1981) Interaction of chemical carcinogens with macromolecules. J Cancer Res Clinical Onc 99:167–186

    Article  Google Scholar 

  • Osakabe K, Osakabe Y, Toki S (2010) Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proc Natl Acad Sci USA 107:12034–12039

    Article  PubMed  CAS  Google Scholar 

  • Pacher M, Schmidt-Puchta W, Puchta H (2007) Two unlinked double-strand breaks can induce reciprocal exchanges in plant genomes via homologous recombination and nonhomologous end joining. Genetics 175:21–29

    Article  PubMed  CAS  Google Scholar 

  • Puizina J, Siroky J, Mokros P, Schweizer D, Riha K (2004) Mre11 deficiency in arabidopsis is associated with chromosomal instability in somatic cells and Spo11-dependent genome fragmentation during meiosis. Plant Cell 16:1968–1978

    Article  PubMed  CAS  Google Scholar 

  • Riha K, Watson JM, Parkey J, Shippen DE (2002) Telomere length deregulation and enhanced sensitivity to genotoxic stress in Arabidopsis mutants deficient in Ku70. EMBO J 21:2819–2826

    Article  PubMed  CAS  Google Scholar 

  • Robert I, Dantzer F, Reina-San-Martin B (2009) Parp1 facilitates alternative NHEJ, whereas Parp2 suppresses IgH/c-myc translocations during immunoglobulin class switch recombination. J Exp Med 206:1047–1056

    Article  PubMed  CAS  Google Scholar 

  • Rosidi B, Wang M, Wu W, Sharma A, Wang H, Iliakis G (2008) Histone H1 functions as a stimulatory factor in backup pathways of NHEJ. Nucleic Acids Res 36:1610–1623

    Article  PubMed  CAS  Google Scholar 

  • San Filippo J, Sung P, Klein H (2008) Mechanism of eukaryotic homologous recombination. Ann Rev Biochem 77:229–257

    Article  PubMed  CAS  Google Scholar 

  • Schreiber V, Amé J-C, Dollé P, Schultz I, Rinaldi B, Fraulob V, Ménissier-de Murcia J, de Murcia G (2002) Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. J Biol Chem 277:23028–23036

    Article  PubMed  CAS  Google Scholar 

  • Schreiber V, Dantzer F, Ame J-C, de Murcia G (2006) Poly(ADP-ribose): novel functions for an old molecule. Nature Rev Mol Cell Biol 7:517–528

    Article  CAS  Google Scholar 

  • Shrivastav M, De Haro LP, Nickoloff JA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18:134–147

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Adachi Y, Chiba K, Oguchi K, Takahashi H (2002) Identification of Ku70 and Ku80 homologues in Arabidopsis thaliana: evidence for a role in the repair of DNA double- strand breaks. Plant J 29:771–781

    Article  PubMed  CAS  Google Scholar 

  • Uchiyama Y, Suzuki Y, Sakaguchi K (2008) Characterization of plant XRCC1 and its interaction with proliferating cell nuclear antigen. Planta 227:1233–1241

    Article  PubMed  CAS  Google Scholar 

  • van Attikum H, Bundock P, Overmeer RM, Lee L-Y, Gelvin SB, Hooykaas PJJ (2003) The Arabidopsis AtLIG4 gene is required for the repair of DNA damage, but not for the integration of Agrobacterium T-DNA. Nucleic Acids Res 31:4247–4255

    Article  PubMed  Google Scholar 

  • Vanderauwera S, De Block M, Van de Steene N, van de Cotte B, Metzlaff M, Van Breusegem F (2007) Silencing of poly(ADP-ribose) polymerase in plants alters abiotic stress signal transduction. Proc Natl Acad Sci USA 104:15150–15155

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Perrault AR, Takeda Y, Qin W, Wang H, Iliakis G (2003) Biochemical evidence for Ku-independent backup pathways of NHEJ. Nucleic Acids Res 31:5377–5388

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Wu W, Wu W, Rosidi B, Zhang L, Wang H, Iliakis G (2006) PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res 34:6170–6182

    Article  PubMed  CAS  Google Scholar 

  • West CE, Waterworth WM, Jiang Q, Bray CM (2000) Arabidopsis DNA ligase IV is induced by γ-irradiation and interacts with an Arabidopsis homologue of the double strand break repair protein XRCC4. Plant J 24:67–78

    Article  PubMed  CAS  Google Scholar 

  • West CE, Waterworth WM, Story GW, Sunderland PA, Jiang Q, Bray CM (2002) Disruption of the Arabidopsis AtKu80 gene demonstrates an essential role for AtKu80 protein in efficient repair of DNA double-strand breaks in vivo. Plant J 31:517–528

    Article  PubMed  CAS  Google Scholar 

  • Woodhouse BC, Dianov GL (2008) Poly ADP-ribose polymerase-1: an international molecule of mystery. DNA Repair 7:1077–1086

    Article  PubMed  CAS  Google Scholar 

  • Woodhouse BC, Dianova II, Parsons JL, Dianov G (2008) Poly(ADP-ribose) polymerase-1 modulates DNA repair capacity and prevents formation of DNA double strand breaks. DNA Repair 7:932–940

    Article  PubMed  CAS  Google Scholar 

  • Wu W, Wang M, Wu W, Singh SK, Mussfeldt T, Iliakis G (2008) Repair of radiation induced DNA double strand breaks by backup NHEJ is enhanced in G2. DNA Repair 7:329–338

    Article  PubMed  CAS  Google Scholar 

  • Xie A, Kwok A, Scully R (2009) Role of mammalian Mre11 in classical and alternative nonhomologous end joining. Nature Struct Mol Biol 16:814–818

    Article  CAS  Google Scholar 

  • Yélamos J, Schreiber V, Dantzer F (2008) Toward specific functions of poly(ADP-ribose) polymerase-2. Trends Mol Med 14:169–178

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Li Liang for providing the plasmid PUC19PD1/4. This work was financially supported by the Chinese Scholarship Council (CSC) (QJ, HS) and the European Union Program EU Recbreed (KBBE-2008-227190) (SdP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia de Pater.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, Q., Dulk-Ras, A.d., Shen, H. et al. Poly(ADP-ribose)polymerases are involved in microhomology mediated back-up non-homologous end joining in Arabidopsis thaliana . Plant Mol Biol 82, 339–351 (2013). https://doi.org/10.1007/s11103-013-0065-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-013-0065-9

Keywords

Navigation