Skip to main content
Log in

The endoplasmic reticulum stress induced by highly expressed OsrAAT reduces seed size via pre-mature programmed cell death

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

An Erratum to this article was published on 07 May 2013

Abstract

The high accumulation of a recombinant protein in rice endosperm causes endoplasmic reticulum (ER) stress and in turn dramatically affects endogenous storage protein expression, protein body morphology and seed phenotype. To elucidate the molecular mechanisms underlying these changes in transgenic rice seeds, we analyzed the expression profiles of endogenous storage proteins, ER stress-related and programmed cell death (PCD)-related genes in transgenic lines with different levels of Oryza sativa recombinant alpha antitrypsin (OsrAAT) expression. The results indicated that OsrAAT expression induced the ER stress and that the strength of the ER stress was dependent on OsrAAT expression levels. It in turn induced upregulation of the expression of the ER stress response genes and downregulation of the expression of the endogenous storage protein genes in rice endosperm. Further experiments showed that the ER stress response upregulated the expression of PCD-related genes to disturb the rice endosperm development and induced pre-mature PCD. As consequence, it resulted in decrease of grain weight and size. The mechanisms for the detriment seed phenotype in transgenic lines with high accumulation of the recombinant protein were elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Berger F (1999) Endosperm development. Curr Opin Plant Biol 2(1):28–32

    Article  PubMed  CAS  Google Scholar 

  • Brown RC, Lemmon BE, Olsen OA (1996) Development of the endosperm in rice (Oryza sativa L.): cellularization. J Plant Res 109(3):301–313

    Article  Google Scholar 

  • Cacas JL (2010) Devil inside: does plant programmed cell death involve the endomembrane system. Plant Cell Environ 33(9):1453–1473

    PubMed  CAS  Google Scholar 

  • Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415(6867):92–96

    Article  PubMed  CAS  Google Scholar 

  • Guiboileau A, Sormani R, Meyer C, Masclaux-Daubresse C (2010) Senescence and death of plant organs: nutrient recycling and developmental regulation. Comptes Rendus Biol 333(4):382–391

    Google Scholar 

  • Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6(5):1099–1108

    Article  PubMed  CAS  Google Scholar 

  • Hayashi S, Wakasa Y, Takahashi H, Kawakatsu T, Takaiwa F (2011) Signal transduction by IRE1-mediated splicing of bZIP50 and other stress sensors in the endoplasmic reticulum stress response of rice. Plant J 96:946–956

    Google Scholar 

  • Hayashi S, Wakasa Y, Takaiwa F (2012) Functional integration between defence and IRE1-mediated ER stress response in rice. Sci Rep 2(670):1–5

    Google Scholar 

  • He Y, Ning T, Xie T, Qiu Q, Zhang L, Sun Y, Jiang D, Fu K, Yin F, Zhang W, Shen L, Wang H, Li J, Lin Q, Sun Y, Li H, Zhu Y, Yang D (2011) Large-scale production of functional human serum albumin from transgenic rice seeds. Proc Natl Acad Sci USA 108(47):19078–19083

    Article  PubMed  CAS  Google Scholar 

  • Hetz C, Martinon F, Rodriguez D, Glimcher LH (2011) The unfolded protein response: integrating stress signals through the stress sensor IRE1α. Physiol Rev 91(4):1219–1243

    Google Scholar 

  • Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13(2):89–102

    PubMed  CAS  Google Scholar 

  • Howell SH (2013) Endoplasmic reticulum stress responses in plants. Annu Rev Plant Biol. doi:10.1146/annurev-arplant-050312-120053

    PubMed  Google Scholar 

  • Iwata Y, Koizumi N (2012) Plant transducers of the endoplasmic reticulum unfolded protein response. Trends Plant Sci 17(12):720–727

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, Zhuang M, Hendershot LM (2008) ERdj3, a luminal ER DnaJ homologue, binds directly to unfolded proteins in the mammalian ER: identification of critical residues. Biochemistry 48(1):41–49

    Article  Google Scholar 

  • Kawakatsu T, Takaiwa F (2010) Differences in transcriptional regulatory mechanisms functioning for free lysine content and seed storage protein accumulation in rice grain. Plant Cell Physiol 51(12):1964–1974

    Article  PubMed  CAS  Google Scholar 

  • Kawakatsu T, Hirose S, Yasuda H, Takaiwa F (2010) Reducing rice seed storage protein accumulation leads to changes in nutrient quality and storage organelle formation. Plant Physiol 154(4):1842–1854

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi H, Ikeda TM, Nagata K (2013) Spatial and temporal progress of programmed cell death in the developing starchy endosperm of rice. Planta. doi:10.1007/s00425-013-1854-8

    Google Scholar 

  • Lee K, Tirasophon W, Shen X, Michalak M, Prywes R, Okada T, Yoshida H, Mori K, Kaufman RJ (2002) IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev 16(4):452–466

    Article  PubMed  CAS  Google Scholar 

  • Lim DH, Kim TS, Joo SP, Kim SH (2007) Intracerebral hematoma caused by ruptured traumatic pseudoaneurysm of the middle meningeal artery: a case report. J Korean Neurosurg Soc 42(5):416–418

    Google Scholar 

  • Logue SE, Cleary P, Saveljeva S, Samali A (2013) New directions in ER stress-induced cell death. Apoptosis. doi:10.1007/s10495-10013-10818-10496

    PubMed  Google Scholar 

  • Luo J, Ning T, Sun Y, Zhu J, Zhu Y, Lin Q, Yang D (2008) Proteomic analysis of rice endosperm cells in response to expression of hGM–CSF. J Proteome Res 8(2):829–837

    Article  Google Scholar 

  • Meunier L, Usherwood YK, Chung KT, Hendershot LM (2002) A subset of chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum to bind nascent proteins. Mol Biol Cell 13(12):4456–4469

    Article  PubMed  CAS  Google Scholar 

  • Olsen OA, Potter R, Kalla R (1992) Histo-differentiation and molecular biology of developing cereal endosperm. Seed Sci Res 2(03):117–131

    Article  Google Scholar 

  • Olsen OA, Brown R, Lemmon B (1995) Pattern and process of wall formation in developing endosperm. BioEssays 17(9):803–812

    Article  Google Scholar 

  • Olvera-Carrillo Y, Salanenka Y, Nowack MK (2012) Control of programmed cell death during plant reproductive development. Biocommun Plants 14(2012):171–196

    Article  Google Scholar 

  • Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–529

    Article  PubMed  CAS  Google Scholar 

  • Schroder M, Clark R, Kaufman RJ (2003) IRE1- and HAC1-independent transcriptional regulation in the unfolded protein response of yeast. Mol Microbiol 49(3):591–606

    Article  PubMed  Google Scholar 

  • Steedman HF (1957) Polyester wax: a new ribboning embedding medium for histology. Nature 179(4574):1345

    Google Scholar 

  • van Doorn WG, Woltering EJ (2008) Physiology and molecular biology of petal senescence. J Exp Bot 59(3):453–480

    Google Scholar 

  • Vitha S, Baluska F, Mews M, Volkmann D (1997) Immunofluorescence detection of F-actin on low melting point wax sections from plant tissues. J Histochem Cytochem 45(1):89–95

    Google Scholar 

  • Wakasa Y, Yasuda H, Oono Y, Kawakatsu T, Hirose S, Takahashi H, Hayashi S, Yang L, Takaiwa F (2010) Expression of ER quality control-related genes in response to changes in BiP1 levels in developing rice endosperm. Plant J 65(5):675–689

    Article  Google Scholar 

  • Wakasa Y, Yasuda H, Oono Y, Kawakatsu T, Hirose S, Takahashi H, Hayashi S, Yang L, Takaiwa F (2011) Expression of ER quality control-related genes in response to changes in BiP1 levels in developing rice endosperm. Plant J 65(5):675–689

    Article  PubMed  CAS  Google Scholar 

  • Wakasa Y, Yasuda H, Takaiwa F (2012) Secretory type of recombinant thioredoxin h induces ER stress in endosperm cells of transgenic rice. J Plant Physiol 170(2013):202–210

    PubMed  Google Scholar 

  • Wang W, Liu Z, Guo Z, Song G, Cheng Q, Jiang D, Zhu Y, Yang D (2011) Comparative transcriptomes profiling of photoperiod-sensitive male sterile rice Nongken 58S during the male sterility transition between short-day and long-day. BMC Genomics 12(1):462

    Article  PubMed  CAS  Google Scholar 

  • Wei CX, Lan SY, Xu ZX (2002) Ultrastructural features of nucleus degradation during programmed cell death of starchy endosperm cells in rice. Acta Bot Sin Chin Ed 44(12):1396–1402

    Google Scholar 

  • Woehlbier U, Hetz C (2011) Modulating stress responses by the UPRosome: a matter of life and death. Trends Biochem Sci 36(6):329–337

    Google Scholar 

  • Xie T, Qiu Q, Zhang W, Ning T, Yang W, Zheng C, Wang C, Zhu Y, Yang D (2008) A biologically active rhIGF-1 fusion accumulated in transgenic rice seeds can reduce blood glucose in diabetic mice via oral delivery. Peptides 29(11):1862–1870. doi:10.1016/j.peptides.2008.07.014

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Guo F, Liu B, Huang N, Watkins SC (2003) Expression and localization of human lysozyme in the endosperm of transgenic rice. Planta 216(4):597–603

    PubMed  CAS  Google Scholar 

  • Yang J, Zhao X, Cheng K, Du H, Ouyang Y, Chen J, Qiu S, Huang J, Jiang Y, Jiang L (2012) A killer–protector system regulates both hybrid sterility and segregation distortion in rice. Science 337(6100):1336–1340

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107(7):881–892

    Article  PubMed  CAS  Google Scholar 

  • Young TE, Gallie DR (1999) Analysis of programmed cell death in wheat endosperm reveals differences in endosperm development between cereals. Plant Mol Biol 39(5):915–926

    Article  PubMed  CAS  Google Scholar 

  • Young TE, Gallie DR, DeMason DA (1997) Ethylene-mediated programmed cell death during maize endosperm development of wild-type and shrunken2 genotypes. Plant Physiol 115(2):737–751

    PubMed  CAS  Google Scholar 

  • Zhang L, Shi J, Jiang D, Stupak J, Ou J, Qiu Q, An N, Li J, Yang D (2013) Expression and characterization of recombinant human alpha-antitrypsin in transgenic rice seed. J Biotechnol. doi:10.1016/j.jbiotec.2013.01.008

    Google Scholar 

  • Zuppini A, Navazio L, Mariani P (2004) Endoplasmic reticulum stress-induced programmed cell death in soybean cells. J Cell Sci 117(12):2591–2598

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Masahiro Ogawa for kindly providing the prolamin antibody. This work was supported by the National Scientific Foundation (No. 30671286), the National High-tech R&D Program (863 Program) of China (No. 2011AA100604) and the Major Projects of Genetically Modified Crop of China (No. 2011ZX08001-006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daichang Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary table 1 The primers used for Quantitative-PCR

Supplementary Figure 1 The expression profiles of the different storage protein genes at 3, 6, 9 DAP

11103_2013_56_MOESM3_ESM.tif

Supplementary Figure 2 PCD signals were monitored by TUNEL assay in rice seed development cells at 2, 4, and 6 DAP. The red signal indicates DNA, and the green signal indicates DNA fragmentation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Jiang, D., Pang, J. et al. The endoplasmic reticulum stress induced by highly expressed OsrAAT reduces seed size via pre-mature programmed cell death. Plant Mol Biol 83, 153–161 (2013). https://doi.org/10.1007/s11103-013-0056-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-013-0056-x

Keywords

Navigation