Skip to main content
Log in

Dissecting the molecular basis of the contribution of source strength to high fructan accumulation in wheat

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Fructans represent the major component of water soluble carbohydrates (WSCs) in the maturing stem of temperate cereals and are an important temporary carbon reserve for grain filling. To investigate the importance of source carbon availability in fructan accumulation and its molecular basis, we performed comparative analyses of WSC components and the expression profiles of genes involved in major carbohydrate metabolism and photosynthesis in the flag leaves of recombinant inbred lines from wheat cultivars Seri M82 and Babax (SB lines). High sucrose levels in the mature flag leaf (source organ) were found to be positively associated with WSC and fructan concentrations in both the leaf and stem of SB lines in several field trials. Analysis of Affymetrix expression array data revealed that high leaf sucrose lines grown in abiotic-stress-prone environments had high expression levels of a number of genes in the leaf involved in the sucrose synthetic pathway and photosynthesis, such as Calvin cycle genes, antioxidant genes involved in chloroplast H2O2 removal and genes involved in energy dissipation. The expression of the majority of genes involved in fructan and starch synthetic pathways were positively correlated with sucrose levels in the leaves of SB lines. The high level of leaf fructans in high leaf sucrose lines is likely attributed to the elevated expression levels of fructan synthetic enzymes, as the mRNA levels of three fructosyltransferase families were consistently correlated with leaf sucrose levels among SB lines. These data suggest that high source strength is one of the important genetic factors determining high levels of WSC in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aggarwal PK, Sinha SK (1984) Effect of water stress on grain growth and assimilate partitioning in two cultivars of wheat contrasting in their yield stability in a drought-environment. Ann Bot 53:329–340

    Google Scholar 

  • Altenbach D, Rudino-Pinera E, Olvera C, Boller T, Wiemken A, Ritsema T (2009) An acceptor-substrate binding site determining glycosyl transfer emerges from mutant analysis of a plant vacuolar invertase and a fructosyltransferase. Plant Mol Biol 69:47–56

    Article  PubMed  CAS  Google Scholar 

  • Asseng S, Van Herwaarden AF (2003) Analysis of the benefits to wheat yield from assimilates stored prior to grain filling in a range of environments. Plant Soil 256:217–229

    Article  CAS  Google Scholar 

  • Barnabás B, Jäger K, Fehér A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38

    PubMed  Google Scholar 

  • Blum A (1998) Improving wheat grain filling under stress by stem reserve mobilization. Euphytica 100:77–83

    Article  Google Scholar 

  • Börnke F, Sonnewald S (2011) Biosynthesis and metabolism of starch and sugars. In: Ashihara H, Crozier A, Komamine A (eds) Plant metabolism and biotechnology. Wiley, London, pp 1–25

    Chapter  Google Scholar 

  • Brooks A, Jenner CF, Aspinall D (1982) Effect of water deficit on endosperm starch granules and grain physiology of wheat and barley. Aust J Plant Physiol 9:423–436

    Article  Google Scholar 

  • Chalmers J, Johnson X, Lidgett A, Spangenberg G (2003) Isolation and characterisation of a sucrose: sucrose 1-fructosyltransferase gene from perennial ryegrass (Lolium perenne). J Plant Physiol 160:1385–1391

    Article  PubMed  CAS  Google Scholar 

  • Chalmers J, Lidgett A, Cummings N, Cao Y, Forster J, Spangenberg G (2005) Molecular genetics of fructan metabolism in perennial ryegrass. Plant Biotechnol J 3:459–474

    Article  PubMed  CAS  Google Scholar 

  • Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osorio ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field? Photosynthesis and growth. Ann Bot 89:907–916

    Article  PubMed  CAS  Google Scholar 

  • Chikov VI, Bakirova GG (2004) Role of the apoplast in the control of assimilate transport, photosynthesis, and plant productivity. Russian J Plant Physiol 51:420–431

    Article  CAS  Google Scholar 

  • Ehdaie B, Alloush GA, Madore MA, Waines JG (2006) Genotypic variation for stem reserves and mobilization in wheat: II. postanthesis changes in internode water-soluble carbohydrates. Crop Sci 46:2093–2103

    Article  CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  Google Scholar 

  • Foulkes MJ, Scott RK, Sylvester-Bradley R (2002) The ability of wheat cultivars to withstand drought in UK conditions: formation of grain yield. J Agric Sci 138:153–169

    Article  Google Scholar 

  • Foulkes MJ, Snape JW, Shearman VJ, Reynolds MP, Gaju O, Sylvester-Bradley R (2007) Genetic progress in yield potential in wheat: recent advances and future prospects. J Agric Sci 145:17–29

    Article  CAS  Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    Article  PubMed  CAS  Google Scholar 

  • Gebbing T (2003) The enclosed and exposed part of the peduncle of wheat (Triticum aestivum)—spatial separation of fructan storage. New Phytol 159:245–252

    Article  CAS  Google Scholar 

  • Geigenberger P (2011) Regulation of starch biosynthesis in response to a fluctuating environment. Plant Physiol 155:1566–1577

    Article  PubMed  CAS  Google Scholar 

  • Geigenberger P, Stitt M, Fernie AR (2004) Metabolic control analysis and regulation of the conversion of sucrose to starch in growing potato tubers. Plant Cell Environ 27:655–673

    Article  CAS  Google Scholar 

  • Hayashi H, Chino M (1986) Collection of pure phloem sap from wheat and its chemical composition. Plant Cell Physiol 27:1387–1393

    CAS  Google Scholar 

  • Hayashi H, Chino M (1990) Chemical composition of phloem sap from uppermost internode of the rice plant. Plant Cell Physiol 31:247–251

    CAS  Google Scholar 

  • Henkes S, Sonnewald U, Badur R, Flachmann R, Stitt M (2001) A small decrease of plastid transketolase activity in antisense tobacco transformants has dramatic effects on photosynthesis and phenylpropanoid metabolism. Plant Cell 13:535–551

    PubMed  CAS  Google Scholar 

  • Herbers K, Sonnewald U (1998) Molecular determinants of sink strength. Curr Opin Plant Biol 1:207–216

    Article  PubMed  CAS  Google Scholar 

  • Incoll L, Bonnett G, Gott B (1989) Fructans in the underground storage organs of some australian plants used for food by Aborigines. J Plant Physiol 134:196–202

    Article  CAS  Google Scholar 

  • Ji X, Van den Ende W, van Laere A, Cheng S, Bennett J (2005) Structure, evolution, and expression of the two invertase gene families of rice. J Mol Evol 60:615–634

    Article  PubMed  CAS  Google Scholar 

  • Joudi M, Ahmadi A, Mohamadi V, Abbasi A, Vergauwen R, Mohammadi H, Van den Ende W (2012) Comparison of fructan dynamics in two wheat cultivars with different capacities of accumulation and remobilization under drought stress. Physiol Plant 144:1–12

    Article  PubMed  CAS  Google Scholar 

  • Kawakami A, Yoshida M (2002) Molecular characterization of sucrose: sucrose 1-fructosyltransferase and sucrose: fructan 6-fructosyltransferase associated with fructan accumulation in winter wheat during cold hardening. Biosci Biotechnol Biochem 66:2297–2305

    Article  PubMed  CAS  Google Scholar 

  • Kawakami A, Yoshida M (2005) Fructan:fructan 1-fructosyltransferase, a key enzyme for biosynthesis of graminan oligomers in hardened wheat. Planta 223:90–104

    Article  PubMed  CAS  Google Scholar 

  • Kocal N, Sonnewald U, Sonnewald S (2008) Cell wall-bound invertase limits sucrose export and is involved in symptom development and inhibition of photosynthesis during compatible interaction between tomato and Xanthomonas campestris pv vesicatoria. Plant Physiol 148:1523–1536

    Article  PubMed  CAS  Google Scholar 

  • Koroleva OA, Tomos AD, Farrar JF, Gallagher J, Pollock CJ (2001) Carbon allocation and sugar status in individual cells of barley leaves affects expression of Sucrose: fructan 6-Fructosyltransferase gene. Ann Appl Biol 138:27–32

    Article  CAS  Google Scholar 

  • Kötting O, Kossmann J, Zeeman SC, Lloyd JR (2010) Regulation of starch metabolism: the age of enlightenment? Curr Opin Plant Biol 13:320–328

    Article  Google Scholar 

  • Kusch U, Greiner S, Steininger H, Meyer AD, Corbière-Divialle H, Harms K, Rausch T (2009) Dissecting the regulation of fructan metabolism in chicory (Cichorium intybus) hairy roots. New Phytol 184:127–140

    Article  PubMed  CAS  Google Scholar 

  • Lammens W, Le Roy K, Yuan S, Vergauwen R, Rabijns A, Van Laere A, Strelkov SV, Van den Ende W (2012) Crystal structure of 6-SST/6-SFT from Pachysandra terminalis, a plant fructan biosynthesizing enzyme in complex with its acceptor substrate 6-kestose. Plant J 70:205–219

    Article  PubMed  CAS  Google Scholar 

  • Lasseur B, Lothier J, Wiemken A, Van Laere A, Morvan-Bertrand A, Van den Ende W, Prud’homme M-P (2011) Towards a better understanding of the generation of fructan structure diversity in plants: molecular and functional characterization of a sucrose:fructan 6-fructosyltransferase (6-SFT) cDNA from perennial ryegrass (Lolium perenne). J Exp Bot 62:1871–1885

    Article  PubMed  CAS  Google Scholar 

  • Li X-P, Gilmore AM, Niyogi KK (2002a) Molecular and global time-resolved analysis of a psbS gene dosage effect on pH- and xanthophyll cycle-dependent non-photochemical quenching in photosystem II. J Biol Chem 277:33590–33597

    Article  PubMed  CAS  Google Scholar 

  • Li X-P, Müller-Moulé P, Gilmore AM, Niyogi KK (2002b) PsbS-dependent enhancement of feedback de-excitation protects photosystem II from photoinhibition. Proc Natl Acad Sci USA 99:15222–15227

    Article  PubMed  CAS  Google Scholar 

  • Li X-P, Gilmore AM, Caffarri S, Bassi R, Golan T, Kramer D, Niyogi KK (2004) Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J Biol Chem 279:22866–22874

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Mouradov A, Smith KF, Spangenberg G (2011) An improved method for quantitative analysis of total fructans in plant tissues. Anal Biochem 418:253–259

    Article  PubMed  CAS  Google Scholar 

  • Livingston DP, Henson CA (1998) Apoplastic sugars, fructans, fructan exohydrolase, and invertase in winter oat: responses to second-phase cold hardening. Plant Physiol 116:403–408

    Article  CAS  Google Scholar 

  • Lothier J, Lasseur B, Le Roy K, Van Laere A, Prud’homme MP, Barre P, Van den Ende W, Morvan-Bertrand A (2007) Cloning, gene mapping, and functional analysis of a fructan 1-exohydrolase (1-feh) from Lolium perenne implicated in fructan synthesis rather than in fructan mobilization. J Exp Bot 58:1969–1983

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Koroleva OA, Farrar JF, Gallagher J, Pollock CJ, Tomos AD (2002) Rubisco small subunit, chlorophyll a/b-binding protein and sucrose:fructan-6-fructosyltransferase gene expression and sugar status in single barley leaf cells in situ. Cell type specificity and induction by light. Plant Physiol 130:1335–1348

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Noël GA, Tognetti JA, Salerno GL, Pontis HG (2010) Sugar signaling of fructan metabolism: new insights on protein phosphatases in sucrose-fed wheat leaves. Plant Signal Behav 5:311–313

    Article  PubMed  Google Scholar 

  • Martínez-Noël G, Tognetti JA, Pontis HG (2001) Protein kinase and phosphatase activities are involved in fructan synthesis initiation mediated by sugars. Planta 213:640–646

    Article  Google Scholar 

  • Martínez-Noël G, Tognetti J, Nagaraj V, Wiemken A, Pontis H (2006) Calcium is essential for fructan synthesis induction mediated by sucrose in wheat. Planta 225:183–191

    Article  PubMed  Google Scholar 

  • Martínez-Noël GA, Tognetti JA, Salerno GL, Wiemken A, Pontis HG (2009) Protein phosphatase activity and sucrose-mediated induction of fructan synthesis in wheat. Planta 230:1071–1079

    Article  PubMed  Google Scholar 

  • McIntyre CL, Casu RE, Rattey A, Dreccer MF, Kam JW, van Herwaarden AF, Shorter R, Xue GP (2011) Linked gene networks involved in nitrogen and carbon metabolism and levels of water soluble carbohydrate accumulation in wheat stems. Func Integr Genomics 11:585–597

    Article  CAS  Google Scholar 

  • Müller J, Aeschbacher RA, Sprenger N, Boller T, Wiemken A (2000) Disaccharide-mediated regulation of sucrose: fructan-6-fructosyltransferase, a key enzyme of fructan synthesis in barley leaves. Plant Physiol 123:265–274

    Article  PubMed  Google Scholar 

  • Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    Article  PubMed  Google Scholar 

  • Murchie EH, Niyogi KK (2011) Manipulation of photoprotection to improve plant photosynthesis. Plant Physiol 155:86–92

    Article  PubMed  CAS  Google Scholar 

  • Murgia I, Tarantino D, Vannini C, Bracale M, Carrabvieri S, Soave C (2004) Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to paraquat-induced photooxidative stress and to nitric oxide-induced cell death. Plant J 38:940–953

    Article  PubMed  CAS  Google Scholar 

  • Nagaraj VJ, Riedla R, Bollera T, Wiemken A, Meyer AD (2001) Light and sugar regulation of the barley sucrose: fructan 6-fructosyltransferase promoter. J Plant Physiol 158:1601–1607

    Article  CAS  Google Scholar 

  • Nagaraj VJ, Altenbach D, Galati V, Lüscher M, Meyer AD, Boiler T, Wiemken A (2004) Distinct regulation of sucrose: sucrose-1-fructosyltransferase (1-SST) and sucrose: fructan-6-fructosyltransferase (6-SFT), the key enzymes of fructan synthesis in barley leaves: 1-SST as the pacemaker. New Phytol 161:735–748

    Article  CAS  Google Scholar 

  • Olivares-Villegas JJ, Reynolds MP, McDonald GK (2007) Drought-adaptive attributes in the Seri/Babax hexaploid wheat population. Func Plant Biol 34:189–203

    Article  Google Scholar 

  • Pang C-H, Li K, Wang B (2011) Overexpression of SsCHLAPXs confers protection against oxidative stress induced by high light in transgenic Arabidopsis thaliana. Physiol Plant 143:355–366

    Article  PubMed  CAS  Google Scholar 

  • Pego JV, Kortstee AJ, Huijser C, Smeekens SCM (2000) Photosynthesis, sugars and the regulation of gene expression. J Exp Bot 51:407–416

    Article  PubMed  CAS  Google Scholar 

  • Raines CA (2003) The Calvin cycle revisited. Photosynth Res 75:1–10

    Article  PubMed  CAS  Google Scholar 

  • Raines CA (2011) Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies. Plant Physiol 155:36–42

    Article  PubMed  CAS  Google Scholar 

  • Randez-gil F, Herrero P, Sanz P, Prieto JA, Moreno F (1998) Hexokinase II has a double cytosolic-nuclear localisation in Saccharomyces cerevisiae. FEBS Lett 425:475–478

    Article  PubMed  CAS  Google Scholar 

  • Ritsema T, Smeekens S (2003) Fructans: beneficial for plants and humans. Curr Opin Plant Biol 6:223–230

    Article  PubMed  CAS  Google Scholar 

  • Ritsema T, Brodmann D, Diks SH, Bos CL, Nagaraj V, Pieterse CMJ, Boller T, Wiemken A, Peppelenbosch MP (2009) Are small GTPases signal hubs in sugar-mediated induction of fructan biosynthesis? PLoS ONE 4:e6605

    Article  PubMed  Google Scholar 

  • Ruelland E, Miginiac-Maslow M (1999) Regulation of chloroplast enzyme activities by thioredoxins: activation or relief from inhibition? Trends Plant Sci 4:136–141

    Article  PubMed  Google Scholar 

  • Ruuska SA, Rebetzke GJ, van Herwaarden AF, Richards RA, Fettell NA, Tabe L, Jenkins CLD (2006) Genotypic variation in water-soluble carbohydrate accumulation in wheat. Funct Plant Biol 33:799–809

    Article  CAS  Google Scholar 

  • Ruuska SA, Lewis DC, Kennedy G, Furbank RT, Jenkins CLD, Tabe LM (2008) Large scale transcriptome analysis of the effects of nitrogen nutrition on accumulation of stem carbohydrate reserves in reproductive stage wheat. Plant Mol Biol 66:15–32

    Article  PubMed  CAS  Google Scholar 

  • Schnyder H (1993) The role of carbohydrate storage and redistribution in the source-sink relations of wheat and barley during grain filling. New Phytol 123:233–245

    Article  Google Scholar 

  • Shaw LM, McIntyre CL, Gresshoff PM, Xue GP (2009) Members of the Dof transcription factor family in Triticum aestivum are associated with light-mediated gene regulation. Funct Integr Genomics 9:485–498

    Article  PubMed  CAS  Google Scholar 

  • Shearman VJ, Sylvester-Bradley R, Scott RK, Foulkes MJ (2005) Physiological processes associated with wheat yield progress in UK. Crop Sci 45:175–185

    Google Scholar 

  • Smith AM (2008) Prospects for increasing starch and sucrose yields for bioethanol production. Plant J 54:546–558

    Article  PubMed  CAS  Google Scholar 

  • Stephenson TJ, McIntyre CL, Collet C, Xue GP (2007) Genome-wide identification and expression analysis of the NF-Y family of transcription factors in Triticum aestivum. Plant Mol Biol 65:77–92

    Article  PubMed  CAS  Google Scholar 

  • Subbaiah CC, Palaniappan A, Duncan K, Rhoads DM, Huber SC, Sachs MM (2006) Mitochondrial localization and putative signaling function of sucrose synthase in maize. J Biol Chem 281:15625–15635

    Article  PubMed  CAS  Google Scholar 

  • Sulpice R, Pyl ET, Ishihara H, Trenkamp S, Steinfath M, Witucka-Wall H, Gibon Y, Usadel B, Poree F, Piques MC, Korff MV, Steinhauser MC, Keurentjes JJB, Guenther M, Hoehne M, Selbig J, Fernie AR, Altmann T, Stitt M (2009) Starch as a major integrator in the regulation of plant growth. Proc Natl Acad Sci USA 106:10348–10353

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Badger MR (2010) Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci 16:53–60

    Article  PubMed  Google Scholar 

  • Valluru R, Link J, Claupein W (2011) Natural variation and morpho-physiological traits associated with water-soluble carbohydrate concentration in wheat under different nitrogen levels. Field Crops Res 124:104–113

    Article  Google Scholar 

  • Van den Ende W, Clerens S, Vergauwen R, Van Riet L, Van Laere A, Yoshida M, Kawakami A (2003) Fructan 1-exohydrolases. β-(2,1)-trimmers during graminan biosynthesis in stems of wheat? Purification, characterization, mass mapping, and cloning of two fructan 1-exohydrolase isoforms. Plant Physiol 131:621–631

    Article  Google Scholar 

  • Van den Ende W, Yoshida M, Clerens S, Vergauwen R, Kawakami A (2005) Cloning, characterization and functional analysis of novel 6-kestose exohydrolases (6-KEHs) from wheat (Triticum aestivum). New Phytol 166:917–932

    Article  PubMed  Google Scholar 

  • Van den Ende W, Lammens W, Van Laere A, Schroeven L, Le Roy K (2009) Donor and acceptor substrate selectivity among plant glycoside hydrolase family 32 enzymes. FEBS J 276:5788–5798

    Article  PubMed  Google Scholar 

  • Van den Ende W, Coopman M, Clerens S, Vergauwen R, Le Roy K, Lammens W, Van Laere A (2011) Unexpected presence of graminan- and levan-type fructans in the evergreen frost-hardy eudicot Pachysandra terminalis (Buxaceae): purification, cloning, and functional analysis of a 6-SST/6-SFT enzyme. Plant Physiol 155:603–614

    Article  PubMed  Google Scholar 

  • Van Herwaarden AF, Angus JF, Richards RA, Farquhar GD (1998a) `Haying-off’, the negative grain yield response of dryland wheat to nitrogen fertilizer II. Carbohydrate and protein dynamics. Aust J Agric Res 49:1083–1093

    Article  Google Scholar 

  • Van Herwaarden AF, Richards RA, Farquhar GD, Angus JF (1998b) `Haying-off’, the negative grain yield response of dryland wheat to nitrogen fertilizer III. The influence of water deficit and heat shock. Aust J Agric Res 49:1095–1110

    Article  Google Scholar 

  • Van Laere A, Van den Ende W (2002) Inulin metabolism in dicots: chicory as a model system. Plant Cell Environ 25:803–813

    Article  Google Scholar 

  • Vijn I, Smeekens S (1999) Fructan: more than a reserve carbohydrate? Plant Physiol 120:351–360

    Article  PubMed  CAS  Google Scholar 

  • Wardlaw IF, Willenbrink J (1994) Carbohydrate storage and mobilisation by the culm of wheat between heading and grain maturity: the relation to sucrose synthase and sucrose-phosphate synthase. Aust J Plant Physiol 21:255–271

    Article  CAS  Google Scholar 

  • Wardlaw IF, Willenbrink J (2000) Mobilization of fructan reserves and changes in enzyme activities in wheat stems correlate with water stress during kernel filling. New Phytol 148:413–422

    Article  CAS  Google Scholar 

  • Wise C, Dimler R, Davis H, Rist C (1955) Determination of easily hydrolyzable fructose units in dextran preparations. Anal Chemi 27:33–36

    Article  CAS  Google Scholar 

  • Wu Z, Irizarry RA, Gentleman R, Martinez-Murillo F, Spencer F (2004) A model-based background adjustment for oligonucleotide expression arrays. J Am Stat Asso 99:909–917

    Article  Google Scholar 

  • Xue GP, Loveridge CW (2004) HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J 37:326–339

    Article  PubMed  CAS  Google Scholar 

  • Xue GP, Bower NI, McIntyre CL, Riding GA, Kazan K, Shorter R (2006a) TaNAC69 from the NAC superfamily of transcription factors is up-regulated by abiotic stresses in wheat and recognises two consensus DNA-binding sequences. Funct Plant Biol 33:43–57

    Article  CAS  Google Scholar 

  • Xue GP, McIntyre CL, Chapman S, Bower NI, Way H, Reverter A, Clarke B, Shorter R (2006b) Differential gene expression of wheat progeny with contrasting levels of transpiration efficiency. Plant Mol Biol 61:863–881

    Article  PubMed  CAS  Google Scholar 

  • Xue GP, McIntyre CL, Glassop D, Shorter R (2008a) Use of expression analysis to dissect alterations in carbohydrate metabolism in wheat leaves during drought stress. Plant Mol Biol 67:197–214

    Article  PubMed  CAS  Google Scholar 

  • Xue GP, McIntyre CL, Jenkins CLD, Glassop D, van Herwaarden AF, Shorter R (2008b) Molecular dissection of variation in carbohydrate metabolism related to water soluble carbohydrate accumulation in stems of wheat (Triticum aestivam L.). Plant Physiol 146:441–454

    Article  PubMed  CAS  Google Scholar 

  • Xue GP, McIntyre CL, Rattey AR, van Herwaarden AF, Shorter R (2009) Use of dry matter content as a rapid and low-cost estimate for ranking genotypic differences in water soluble carbohydrate concentrations in the stem and leaf sheath of Triticum aestivum. Crop Pasture Sci 60:51–59

    Article  CAS  Google Scholar 

  • Xue GP, Kooiker M, Drenth J, McIntyre CL (2011) TaMYB13 is a transcriptional activator of fructosyltransferase genes involved in β-2,6-linked fructan synthesis in wheat. Plant J 68:857–870

    Article  PubMed  CAS  Google Scholar 

  • Yabuta Y, Motoki T, Yoshimura K, Takada T, Ishikawa T, Shigeoka S (2002) Thylakoid membrane-bound ascorbate peroxidase is a limiting factor of antioxidative systems under photo-oxidative stress. Plant J 32:912–925

    Article  Google Scholar 

  • Yamori W, Nagai T, Makino A (2011) The rate-limiting step for CO2 assimilation at different temperatures is influenced by the leaf nitrogen content in several C3 crop species. Plant Cell Environ 34:764–777

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the Australian Grain Research & Development Corporation. Authors are grateful to Drs Ray Shorter, Allan R. Rattey, Fernanda Dreccer, Mr Greg Roberts and Mr. Philip van Drie for their help in field trials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang-Ping Xue.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, GP., Drenth, J., Glassop, D. et al. Dissecting the molecular basis of the contribution of source strength to high fructan accumulation in wheat. Plant Mol Biol 81, 71–92 (2013). https://doi.org/10.1007/s11103-012-9983-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-012-9983-1

Keywords

Navigation