Plant Molecular Biology

, Volume 73, Issue 4–5, pp 547–558 | Cite as

Genetic structure and regulation of isoprene synthase in Poplar (Populus spp.)

  • Claudia E. VickersEmail author
  • Malcolm Possell
  • C. Nicholas Hewitt
  • Philip M. Mullineaux


Isoprene is a volatile 5-carbon hydrocarbon derived from the chloroplastic methylerythritol 2-C-methyl-d-erythritol 4-phosphate isoprenoid pathway. In plants, isoprene emission is controlled by the enzyme isoprene synthase; however, there is still relatively little known about the genetics and regulation of this enzyme. Isoprene synthase gene structure was analysed in three poplar species. It was found that genes encoding stromal isoprene synthase exist as a small gene family, the members of which encode virtually identical proteins and are differentially regulated. Accumulation of isoprene synthase protein is developmentally regulated, but does not differ between sun and shade leaves and does not increase when heat stress is applied. Our data suggest that, in mature leaves, isoprene emission rates are primarily determined by substrate (dimethylallyl diphosphate, DMADP) availability. In immature leaves, where isoprene synthase levels are variable, emission levels are also influenced by the amount of isoprene synthase protein. No thylakoid isoforms could be identified in Populus alba or in Salix babylonica. Together, these data show that control of isoprene emission at the genetic level is far more complicated than previously assumed.


Isoprene Poplar Isoprene synthase Developmental regulation Isoprenoid pathway 



This research was funded by the UK Biotechnology and Biological Sciences Research Council (BBSRC) grant number BBS/B/12172. The full-length anti-isoprene synthase antibody was kindly provided by Dr Jörg-Peter Schnitzler, IMK-IFU, Garmisch, Germany. We thank Dr Oksana Zakhleniuk and Mr Daniel Exton for skilled technical assistance.

Supplementary material

11103_2010_9642_MOESM1_ESM.pdf (553 kb)
Supplementary material 1 (PDF 553 kb)


  1. Affek HP, Yakir D (2002) Protection by isoprene against singlet oxygen in leaves. Plant Physiol 129:269–277CrossRefPubMedGoogle Scholar
  2. Brilli F, Barta C, Fortunati A, Centritto M, Loreto F (2006) The contribution of different carbon sources to isoprene synthesis during and after drought in Populus alba leaves. Geophys Res Abs 8:EGU06-A-04113Google Scholar
  3. Brüggemann N, Schnitzler JP (2002) Diurnal variation of dimethylallyl diphosphate concentrations in oak (Quercus robur) leaves. Physiol Plant 115:190–196CrossRefPubMedGoogle Scholar
  4. Chameides WL, Lindsay RW, Richardson J, Kiang CS (1998) The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case study. Science 241:1473–1475CrossRefGoogle Scholar
  5. Cinege G, Louis S, Hänsch R, Schnitzler JP (2008) Regulation of isoprene synthase promoter by environmental and internal factors. Plant Mol BiolGoogle Scholar
  6. Claeys M, Graham B, Vas G, Wang W, Vermeylen R, Pashynska V, Cafmeyer J, Guyon P, Andreae MO, Artaxo P, Maenhaut W (2004) Formation of secondary organic aerosols through photooxidation of isoprene. Science 303:1173–1176CrossRefPubMedGoogle Scholar
  7. Fortunati A, Barta C, Brilli F, Centritto M, Zimmer I, Schnitzler JP, Loreto F (2008) Isoprene emission is not temperature-dependent during and after severe drought-stress: a physiological and biochemical analysis. Plant J 55:687–697CrossRefPubMedGoogle Scholar
  8. Frohman MA, Dush MK, Martin GR (1988) Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA 85:8998–9002CrossRefPubMedGoogle Scholar
  9. Geiss-Friedlander R, Melchior F (2007) Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8:947–956CrossRefPubMedGoogle Scholar
  10. Granier C, Pétron G, Müller JF, Brasseur G (2000) The impact of natural and anthropogenic hydrocarbons on the tropospheric budget of carbon monoxide. Atmos Environ 34:5255–5270CrossRefGoogle Scholar
  11. Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, McKay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman P (1995) A global model of natural volatile organic compound emissions. J Geophys Res 100:8873–8892CrossRefGoogle Scholar
  12. Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos Chem Phys 6:3181–3210CrossRefGoogle Scholar
  13. Hannich JT, Lewis A, Kroetz MB, Li SJ, Heide H, Emili A, Hochstrasser M (2005) Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J Biol Chem 280:4102–4110CrossRefPubMedGoogle Scholar
  14. Harley P, Guenther A, Zimmerman P (1996) Effects of light, temperature and canopy position on net photosynthesis and isoprene emission from sweetgum (Liquidambar styraciflua) leaves. Tree Physiol 16:25–32PubMedGoogle Scholar
  15. Hayward S, Tani A, Hewitt CN (2002) Performance characteristics of a proton transfer reaction-mass spectrometer for measuring volatile organic compounds. Environ Sci Technol 36:1560CrossRefGoogle Scholar
  16. Hewitt CN, Hayward S, Tani A (2003) Application of proton transfer reaction mass spectrometry for the monitoring and measurement of volatile organic compounds in the atmosphere. J Environ Monitor 5:1–7CrossRefGoogle Scholar
  17. Kreuzwieser J, Graus M, Wisthaler A, Hansel A, Rennenberg H, Schnitzler JP (2002) Xylem-transported glucose as an additional carbon source for leaf isoprene formation in Quercus robur. New Phytol 156:171–178CrossRefGoogle Scholar
  18. Laemmli UK (1970) Cleavage of structural proteins during assembly of head of bacteriophage-T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  19. Landry LG, Pell EJ (1993) Modification of Rubisco and altered proteolytic activity in O3-stressed hybrid poplar (Populus maximowizii × trichocarpa). Plant Physiol 101:1355–1362PubMedGoogle Scholar
  20. Laothawornkitkul J, Paul ND, Vickers CE, Possell M, Taylor JE, Mullineaux PM, Hewitt CN (2008) Isoprene emissions influence herbivore feeding decisions. Plant Cell Environ 31:1410–1415CrossRefPubMedGoogle Scholar
  21. Laothawornkitkul J, Taylor JE, Paul ND, Hewitt CN (2009) Biogenic volatile organic compounds in the Earth system. New Phytol 183:27–51CrossRefPubMedGoogle Scholar
  22. Lehning A, Zimmer I, Steinbrecher R, Brüggemann N, Schnitzler J-P (1999) Isoprene synthase activity and its relation to isoprene emission in Quercus robur L. leaves. Plant Cell Environ 22:495–504CrossRefGoogle Scholar
  23. Lexer C, Fay MF, Joseph JA, Nica MS, Heinze B (2005) Barrier to gene flow between two ecologically divergent Populus species, P. alba (white poplar) and P. tremula (European aspen): the role of ecology and life history in gene introgression. Mol Ecol 14:1045–1057CrossRefPubMedGoogle Scholar
  24. Litvak ME, Loreto F, Harley PC, Sharkey TD, Monson RK (1996) The response of isoprene emission rate and photosynthetic rate to photon flux and nitrogen supply in aspen and white oak trees. Plant Cell Environ 19:549–559CrossRefGoogle Scholar
  25. Loivamäki M, Louis S, Cinege G, Zimmer I, Fischbach RJ, Schnitzler JP (2006) Circadian rhythms of isoprene biosynthesis in Grey Poplar leaves. Plant Physiol 106Google Scholar
  26. Loivamäki M, Mumm R, Dicke M, Schnitzler JP (2008) Isoprene interferes with the attraction of bodyguards by herbaceous plants. Proc Natl Acad Sci USA 104:17430–17435CrossRefGoogle Scholar
  27. Loreto F, Delfine S (2000) Emission of isoprene from salt-stressed Eucalyptus globulus leaves. Plant Physiol 123:1605–1610CrossRefPubMedGoogle Scholar
  28. Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1787CrossRefPubMedGoogle Scholar
  29. Loreto F, Mannozzi M, Maris C, Nascetti P, Ferranti F, Pasqualini S (2001) Ozone quenching properties of isoprene and its antioxidant role in leaves. Plant Physiol 126:993–1000CrossRefPubMedGoogle Scholar
  30. Magel E, Mayrhofer S, Müller A, Zimmer I, Hampp R, Schnitzler J-P (2006) Photosynthesis and substrate supply for isoprene biosynthesis in poplar leaves. Atmos Environ 40(S1):138–151CrossRefGoogle Scholar
  31. Mayrhofer S, Teuber M, Zimmer I, Louis S, Fischbach RJ, Schnitzler JP (2005) Diurnal and seasonal variation of isoprene biosynthesis-related genes in Grey Poplar leaves. Plant Physiol 139:474–484CrossRefPubMedGoogle Scholar
  32. Mazumder B, Seshadri V, Fox PL (2007) Translational control by the 3′ UTR: the ends specify the means. Trends Biochem Sci 28:91–98CrossRefGoogle Scholar
  33. Mignone F, Gissi C, Liuni S, Pesole G (2002) Untranslated regions of mRNAs. Genome Biol 3:0004.1-0004.10CrossRefGoogle Scholar
  34. Miller B, Oschinski C, Zimmer W (2001) First isolation of an isoprene synthase gene from poplar and successful expression of the gene in Escherichia coli. Planta 213:483–487CrossRefPubMedGoogle Scholar
  35. Noctor G, Arisi AC, Jouanin L, Foyer CH (1998) Manipulation of glutathione and amino acid biosynthesis in the chloroplast. Plant Physiol 118:471–482CrossRefPubMedGoogle Scholar
  36. Pierce T, Geron C, Bender L, Dennis R, Tonnesen G, Guenther A (1998) Influence of increased isoprene emissions on regional ozone modeling. J Geophys Res-Atmos 103:25611–25629CrossRefGoogle Scholar
  37. Poisson N, Kanakidou M, Crutzen PJ (2000) Impact of non-methane hydrocarbons on tropospheric chemistry and the oxidizing power of the global troposphere: 3-dimensional modelling results. J Atmos Chem 36:157–230CrossRefGoogle Scholar
  38. Rajora OP (1999) Genetic biodiversity impacts of silvicultural practices and phenotypic selection in white spruce. Theor Appl Genet 99:954–961CrossRefGoogle Scholar
  39. Rajora OP, Dancik BP (1992) Genetic characterization and relationships of Populus alba, P. tremula, and P. × canescens, and their clones. Theor Appl Genet V84:291–298Google Scholar
  40. Rajora O, Rahman M (2003) Microsatellite DNA and RAPD fingerprinting, identification and genetic relationships of hybrid poplar (Populus × canadensis) cultivars. Theor Appl Genet 106:470–477PubMedGoogle Scholar
  41. Rasulov B, Copolovici L, Laisk A, Niinemets U (2009) Postillumination isoprene emission: in vivo measurements of dimethylallyldiphosphate pool size and isoprene synthase kinetics in aspen leaves. Plant Physiol 108Google Scholar
  42. Ratna WN, Oyeamalu C (2002) The upstream stem-loop domain of the 3′ untranslated region of apolipoprotein II mRNA binds the estrogen-regulated mRNA stabilizing factor. J Steroid Biochem Mol Biol 80:383–393CrossRefPubMedGoogle Scholar
  43. Rosenstiel TN, Fisher AJ, Fall R, Monson RK (2002) Differential accumulation of dimethylallyl diphosphate in leaves and needles of isoprene- and methylbutenol-emitting and nonemitting species. Plant Physiol 129:1276–1284CrossRefPubMedGoogle Scholar
  44. Sambrook J, Fritsch EF Maniatis, Maniatis T (1989) Molecular Cloning: a laboratory manual. Cold Spring Harbour Laboratory Press, New YorkGoogle Scholar
  45. Sasaki K, Ohara K, Yazaki K (2005) Gene expression and characterization of isoprene synthase from Populus alba. FEBS Lett 579:2514–2518CrossRefPubMedGoogle Scholar
  46. Schaaf MJM, Cidlowski JA (2002) AUUUA motifs in the 3′ UTR of human glucocorticoid receptor alpha and beta mRNA destabilize mRNA and decrease receptor protein expression. Steroids 67:627–636CrossRefPubMedGoogle Scholar
  47. Schnitzler JP, Graus M, Kreuzwieser J, Heizmann U, Rennenberg H, Wisthaler A, Hansel A (2004) Contribution of different carbon sources to isoprene biosynthesis in poplar leaves. Plant Physiol 135:152–160CrossRefPubMedGoogle Scholar
  48. Schnitzler JP, Zimmer I, Bachl A, Arend M, Fromm J, Fischbach RJ (2005) Biochemical properties of isoprene synthase in poplar (Populus × canescens). Planta 1-10Google Scholar
  49. Shallcross DE, Monks PS (2000) New Directions: a role for isoprene in biosphere-climate-chemistry feedbacks. Atmos Environ 34:1659–1660CrossRefGoogle Scholar
  50. Sharkey TD (1996) Isoprene synthesis by plants and animals. Endeavour 20:74–78CrossRefPubMedGoogle Scholar
  51. Sharkey TD, Loreto F (1993) Water stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves. Oecologia 95:328–333CrossRefGoogle Scholar
  52. Sharkey TD, Singsaas EL (1995) Why plants emit isoprene. Nature 374:769CrossRefGoogle Scholar
  53. Sharkey TD, Yeh S (2001) Isoprene emission from plants. Annu Rev Plant Phys Plant Mol Biol 52:407–436CrossRefGoogle Scholar
  54. Sharkey TD, Loreto F, Delwiche CF (1991) High carbon dioxide and sun/shade effects on isoprene emission from oak and aspen tree leaves. Plant Cell Environ 14:333–338CrossRefGoogle Scholar
  55. Sharkey TD, Yeh S, Wiberley AE, Falbel TG, Gong D, Fernandez DE (2005) Evolution of the isoprene biosynthetic pathway in kudzu. Plant Physiol 137:700–712CrossRefPubMedGoogle Scholar
  56. Silver GM, Fall R (1991) Enzymatic synthesis of isoprene from dimethylallyl diphosphate in aspen leaf extracts. Plant Physiol 97:1588–1591CrossRefPubMedGoogle Scholar
  57. Silver GM, Fall R (1995) Characterization of aspen isoprene synthase, an enzyme responsible for leaf isoprene emission to the atmosphere. J Biol Chem 270:13010–13016CrossRefPubMedGoogle Scholar
  58. Singsaas EL, Lerdau M, Winter K, Sharkey TD (1997) Isoprene increases thermotolerance of isoprene-emitting species. Plant Physiol 115:1413–1420PubMedGoogle Scholar
  59. Siwko ME, Marrink SJ, de Vries AH, Kozubek A, Schoot Uiterkamp AJ, Mark AE (2007) Does isoprene protect plant membranes from thermal shock? A molecular dynamics study. Biochem Biophys Acta 1768:198–206CrossRefPubMedGoogle Scholar
  60. Terry GN, Stokes NJ, Hewitt CN, Mansfield TA (1995) Exposure to isoprene promotes flowering in plants. J Exp Bot 46:1629–1631CrossRefGoogle Scholar
  61. Thompson AM (1992) The oxidizing capacity of the earth’s atmosphere—probable past and future changes. Science 256:1157–1165CrossRefPubMedGoogle Scholar
  62. Trainer M, Williams EJ, Parrish DD, Buhr MP, Allwine EJ, Westberg HH, Fehsenfeld FC, Liu SC (1987) Models and observations of the impact of natural hydrocarbons on rural ozone. Nature 329:705–707CrossRefGoogle Scholar
  63. Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Dejardin A, dePamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjarvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leple JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouze P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604CrossRefPubMedGoogle Scholar
  64. Vickers CE, Possell M, Cojocariu C, Velikova V, Laothawornkitkul J, Ryan A, Mullineaux PM, Hewitt CN (2009a) Isoprene synthesis protects transgenic plants from oxidative stress. Plant Cell Environ 32:520–531CrossRefPubMedGoogle Scholar
  65. Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009b) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5:283–291CrossRefPubMedGoogle Scholar
  66. Walter MH, Hans J, Strack D (2002) Two distantly related genes encoding 1-deoxy-d-xylulose 5-phosphate synthases: differential regulation in shoots and apocarotenoid-accumulating mycorrhizal roots. Plant J 31:243–254CrossRefPubMedGoogle Scholar
  67. Wang KY, Shallcross DE (2000) Modelling terrestrial biogenic isoprene fluxes and their potential impact on global chemical species using a coupled LSM-CTM model. Atmos Environ 34:2909–2925CrossRefGoogle Scholar
  68. Wei Y, Lee JM, Richmond C, Blattner FR, Rafalski JA, LaRossa RA (2001) High-density microarray-mediated gene expression profiling of Escherichia coli. J Bacteriol 183:545–556CrossRefPubMedGoogle Scholar
  69. Wiberley AE, Linskey AR, Falbel TG, Sharkey TD (2005) Development of the capacity for isoprene emission in kudzu. Plant Cell Environ 28:898–905CrossRefGoogle Scholar
  70. Wiberley AE, Donohue AR, Westphal MM, Sharkey TD (2009) Regulation of isoprene emission from poplar leaves throughout a day. Plant Cell Environ 32:939–947CrossRefPubMedGoogle Scholar
  71. Wildermuth MC, Fall R (1996) Light-dependent isoprene emission (characterization of a thylakoid-bound isoprene synthase in Salix discolor chloroplasts). Plant Physiol 112:171–182PubMedGoogle Scholar
  72. Wildermuth MC, Fall R (1998) Biochemical characterization of stromal and thylakoid-bound isoforms of isoprene synthase in willow leaves. Plant Physiol 116:1111–1123CrossRefPubMedGoogle Scholar
  73. Wilkie GS, Dickson KS, Gray NK (2003) Regulation of mRNA translation by 5′- and 3′-UTR-binding factors. Trends Biochem Sci 28:182–188CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Claudia E. Vickers
    • 1
    • 3
    Email author
  • Malcolm Possell
    • 2
  • C. Nicholas Hewitt
    • 2
  • Philip M. Mullineaux
    • 1
  1. 1.Department of Biological SciencesEssex UniversityColchesterUK
  2. 2.Lancaster Environment CentreLancaster UniversityLancasterUK
  3. 3.Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaAustralia

Personalised recommendations