Skip to main content
Log in

Luminescence detection of SNARE–SNARE interaction in Arabidopsis protoplasts

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Membrane associated proteins SNAREs (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors) provide the minimal fusion machinery necessary for cellular vesicles to fuse to target organelle membranes in eukaryotic cells. Despite the conserved nature of the fusion machinery in all eukaryotes, it still remains challenging to identify functional SNARE pairs in higher plants. We developed a method based on a split-luciferase complementation assay for detecting changes in SNARE–SNARE interaction by luminescence within Arabidopsis protoplasts that express recombinant proteins at physiological levels in 96-well plates. The reliability of the assay was confirmed by three experiments. First, reduction of the SNARE–SNARE interaction caused by a single amino acid substitution adjacent to the SNARE motif in endosome-localized AtVAM3/SYP22 (syntaxin of plant 22) was detected by a reduction of luminescence. Second, reduction of the interaction between plasma-membrane localized SYP121 and VAMP722 in response to sodium azide was detected in real-time. Third, the results of 21 SNARE pairs investigated by this method largely agreed with the results from previously reported co-immunoprecipitation assays. Using the method, we newly identified the interaction between SYP121 and VAMP722 was significantly increased when the protoplasts were incubated in the light. Microscopic observation of transgenic Arabidopsis expressing GFP–SYP121 (green fluorescent protein tagged SYP121) from its own promoter suggested that the plasma-membrane localization of GFP–SYP121 is maintained by light. These suggested that the vesicle trafficking pathway mediated by SYP121 might be regulated by light in Arabidopsis. In general, this article demonstrated the method that can generate new biological insight of the SNARE protein interactions in plant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • An SJ, Almers W (2004) Tracking SNARE complex formation in live endocrine cells. Science 306:1042–1046

    Article  CAS  PubMed  Google Scholar 

  • Antonin W, Fasshauer D, Becker S, Jahn R, Schneider TR (2002) Crystal structure of the endosomal SNARE complex reveals common structural principles of all SNAREs. Nat Struct Biol 9:107–111

    Article  CAS  PubMed  Google Scholar 

  • Bethani I, Lang T, Geumann U, Sieber JJ, Jahn R, Rizzoli SO (2007) The specificity of SNARE pairing in biological membranes is mediated by both proof-reading and spatial segregation. EMBO J 26:3981–3992

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Noir S, Kwaaitaal M, Hartmann HA, Wu MJ, Mudgil Y, Sukumar P, Muday G, Panstruga R, Jones AM (2009) Two-seven-transmembrane domain MILDEW RESISTANCE LOCUS O proteins cofunction in Arabidopsis root thigmomorphogenesis. Plant Cell 21:1972–1991

    Google Scholar 

  • Dulubova I, Yamaguchi T, Gao Y, Min SW, Huryeva I, Sudhof TC, Rizo J (2002) How Tlg2p/syntaxin 16 ‘snares’ Vps45. EMBO J 21:3620–3631

    Article  CAS  PubMed  Google Scholar 

  • Ebine K, Okatani Y, Uemura T, Goh T, Shoda K, Niihama M, Morita MT, Spitzer C, Otegui MS, Nakano A, Ueda T (2008) A SNARE complex unique to seed plants is required for protein storage vacuole biogenesis and seed development of Arabidopsis thaliana. Plant Cell 20:3006–3021

    Article  CAS  PubMed  Google Scholar 

  • Enami K, Ichikawa M, Uemura T, Kutsuna N, Hasezawa S, Nakagawa T, Nakano A, Sato MH (2009) Differential expression control and polarized distribution of plasma membrane-resident SYP1 SNAREs in Arabidopsis thaliana. Plant Cell Physiol 50:280–289

    Article  CAS  PubMed  Google Scholar 

  • Fisher RJ, Pevsner J, Burgoyne RD (2001) Control of fusion pore dynamics during exocytosis by Munc18. Science 291:875–878

    Article  CAS  PubMed  Google Scholar 

  • Foresti O, daSilva LL, Denecke J (2006) Overexpression of the Arabidopsis syntaxin PEP12/SYP21 inhibits transport from the prevacuolar compartment to the lytic vacuole in vivo. Plant Cell 18:2275–2293

    Article  CAS  PubMed  Google Scholar 

  • Fujikawa Y, Kato N (2007) Split luciferase complementation assay to study protein–protein interactions in Arabidopsis protoplasts. Plant J 52:185–195

    Article  CAS  PubMed  Google Scholar 

  • Geelen D, Leyman B, Batoko H, Di Sansebastiano GP, Moore I, Blatt MR (2002) The abscisic acid-related SNARE homolog NtSyr1 contributes to secretion and growth: evidence from competition with its cytosolic domain. Plant Cell 14:387–406

    Article  CAS  PubMed  Google Scholar 

  • Hartmann U, Valentine WJ, Christie JM, Hays J, Jenkins GI, Weisshaar B (1998) Identification of UV/blue light-response elements in the Arabidopsis thaliana chalcone synthase promoter using a homologous protoplast transient expression system. Plant Mol Biol 36:741–754

    Article  CAS  PubMed  Google Scholar 

  • Hong W (2005) SNAREs and traffic. Biochim Biophys Acta 1744:493–517

    PubMed  Google Scholar 

  • Jahn R, Scheller RH (2006) SNAREs—engines for membrane fusion. Nat Rev Mol Cell Biol 7:631–643

    Article  CAS  PubMed  Google Scholar 

  • Jahn R, Lang T, Sudhof TC (2003) Membrane fusion. Cell 112:519–533

    Article  CAS  PubMed  Google Scholar 

  • Kato N, Reynolds D, Brown ML, Boisdore M, Fujikawa Y, Morales A, Meisel LA (2008) Multidimensional fluorescence microscopy of multiple organelles in Arabidopsis seedlings. Plant Methods 4:9

    Article  PubMed  Google Scholar 

  • Kim SB, Ozawa T, Watanabe S, Umezawa Y (2004) High-throughput sensing and noninvasive imaging of protein nuclear transport by using reconstitution of split Renilla luciferase. Proc Natl Acad Sci USA 101:11542–11547

    Article  CAS  PubMed  Google Scholar 

  • Kwon C, Neu C, Pajonk S, Yun HS, Lipka U, Humphry M, Bau S, Straus M, Kwaaitaal M, Rampelt H, El Kasmi F, Jurgens G, Parker J, Panstruga R, Lipka V, Schulze-Lefert P (2008) Co-option of a default secretory pathway for plant immune responses. Nature 451:835–840

    Article  CAS  PubMed  Google Scholar 

  • Leshem Y, Melamed-Book N, Cagnac O, Ronen G, Nishri Y, Solomon M, Cohen G, Levine A (2006) Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of H2O2-containing vesicles with tonoplast and increased salt tolerance. Proc Natl Acad Sci USA 103:18008–18013

    Article  CAS  PubMed  Google Scholar 

  • Lipka V, Kwon C, Panstruga R (2007) SNARE-ware: the role of SNARE-domain proteins in plant biology. Annu Rev Cell Dev Biol 23:147–174

    Article  CAS  PubMed  Google Scholar 

  • Meyer D, Pajonk S, Micali C, O’Connell R, Schulze-Lefert P (2008) Extracellular transport and integration of plant secretory proteins into pathogen-induced cell wall compartments. Plant J 57:986–999

    Google Scholar 

  • Muller A, Guan C, Galweiler L, Tanzler P, Huijser P, Marchant A, Parry G, Bennett M, Wisman E, Palme K (1998) AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J 17:6903–6911

    Article  CAS  PubMed  Google Scholar 

  • Niihama M, Uemura T, Saito C, Nakano A, Sato MH, Tasaka M, Morita MT (2005) Conversion of functional specificity in Qb-SNARE VTI1 homologues of Arabidopsis. Curr Biol 15:555–560

    Article  CAS  PubMed  Google Scholar 

  • Ohtomo I, Ueda H, Shimada T, Nishiyama C, Komoto Y, Hara-Nishimura I, Takahashi T (2005) Identification of an allele of VAM3/SYP22 that confers a semi-dwarf phenotype in Arabidopsis thaliana. Plant Cell Physiol 46:1358–1365

    Article  CAS  PubMed  Google Scholar 

  • Parlati F, Varlamov O, Paz K, McNew JA, Hurtado D, Sollner TH, Rothman JE (2002) Distinct SNARE complexes mediating membrane fusion in Golgi transport based on combinatorial specificity. Proc Natl Acad Sci USA 99:5424–5429

    Article  CAS  PubMed  Google Scholar 

  • Paulmurugan R, Massoud TF, Huang J, Gambhir SS (2004) Molecular imaging of drug-modulated protein–protein interactions in living subjects. Cancer Res 64:2113–2119

    Article  CAS  PubMed  Google Scholar 

  • Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (2005) Towards a proteome-scale map of the human protein–protein interaction network. Nature 437:1173–1178

    Article  CAS  PubMed  Google Scholar 

  • Sanderfoot AA, Kovaleva V, Bassham DC, Raikhel NV (2001) Interactions between syntaxins identify at least five SNARE complexes within the Golgi/prevacuolar system of the Arabidopsis cell. Mol Biol Cell 12:3733–3743

    CAS  PubMed  Google Scholar 

  • Sato MH, Nakamura N, Ohsumi Y, Kouchi H, Kondo M, Hara-Nishimura I, Nishimura M, Wada Y (1997) The AtVAM3 encodes a syntaxin-related molecule implicated in the vacuolar assembly in Arabidopsis thaliana. J Biol Chem 272:24530–24535

    Article  CAS  PubMed  Google Scholar 

  • Schoch S, Deak F, Konigstorfer A, Mozhayeva M, Sara Y, Sudhof TC, Kavalali ET (2001) SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science 294:1117–1122

    Article  CAS  PubMed  Google Scholar 

  • Schuette CG, Hatsuzawa K, Margittai M, Stein A, Riedel D, Kuster P, Konig M, Seidel C, Jahn R (2004) Determinants of liposome fusion mediated by synaptic SNARE proteins. Proc Natl Acad Sci USA 101:2858–2863

    Article  CAS  PubMed  Google Scholar 

  • Schulze WX, Reinders A, Ward J, Lalonde S, Frommer WB (2003) Interactions between co-expressed Arabidopsis sucrose transporters in the split-ubiquitin system. BMC Biochem 4:3

    Article  PubMed  Google Scholar 

  • Stefan E, Aquin S, Berger N, Landry CR, Nyfeler B, Bouvier M, Michnick SW (2007) Quantification of dynamic protein complexes using Renilla luciferase fragment complementation applied to protein kinase A activities in vivo. Proc Natl Acad Sci USA 104:16916–16921

    Article  CAS  PubMed  Google Scholar 

  • Stein M, Dittgen J, Sanchez-Rodriguez C, Hou BH, Molina A, Schulze-Lefert P, Lipka V, Somerville S (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell 18:731–746

    Article  CAS  PubMed  Google Scholar 

  • Surpin M, Raikhel N (2004) Traffic jams affect plant development and signal transduction. Nat Rev Mol Cell Biol 5:100–109

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Kitakura S, De Rycke R, De Groodt R, Friml J (2009) Fluorescence imaging-based screen identifies ARF GEF component of early endosomal trafficking. Curr Biol 19:391–397

    Article  CAS  PubMed  Google Scholar 

  • Tucker WC, Weber T, Chapman ER (2004) Reconstitution of Ca2+-regulated membrane fusion by synaptotagmin and SNAREs. Science 304:435–438

    Article  CAS  PubMed  Google Scholar 

  • Uemura T, Ueda T, Ohniwa RL, Nakano A, Takeyasu K, Sato MH (2004) Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells. Cell Struct Funct 29:49–65

    Article  CAS  PubMed  Google Scholar 

  • Walter M, Chaban C, Schutze K, Batistic O, Weckermann K, Nake C, Blazevic D, Grefen C, Schumacher K, Oecking C, Harter K, Kudla J (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40:428–438

    Article  CAS  PubMed  Google Scholar 

  • Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Sollner TH, Rothman JE (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92:759–772

    Article  CAS  PubMed  Google Scholar 

  • Wrona AF, Spanswick RM, Aist JR (1988) Calcium transport in protoplasts isolated from ml-o barley isolines resistant and susceptible to powdery mildew. Plant Physiol 88:1157–1162

    Article  CAS  PubMed  Google Scholar 

  • Xia Z, Zhou Q, Lin J, Liu Y (2001) Stable SNARE complex prior to evoked synaptic vesicle fusion revealed by fluorescence resonance energy transfer. J Biol Chem 276:1766–1771

    CAS  PubMed  Google Scholar 

  • Yano D, Sato M, Saito C, Sato MH, Morita MT, Tasaka M (2003) A SNARE complex containing SGR3/AtVAM3 and ZIG/VTI11 in gravity-sensing cells is important for Arabidopsis shoot gravitropism. Proc Natl Acad Sci USA 100:8589–8594

    Article  CAS  PubMed  Google Scholar 

  • Yoshizawa AC, Kawashima S, Okuda S, Fujita M, Itoh M, Moriya Y, Hattori M, Kanehisa M (2006) Extracting sequence motifs and the phylogenetic features of SNARE-dependent membrane traffic. Traffic 7:1104–1118

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The project was supported by the USDA Cooperative State Research, Education and Extension Service—National Research Initiative—Plant Genome Program, award no. 2006-35604-16627, for N.K. The project described was partially supported by Grant Number P20RR016456 from the National Center For Research Resources. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Center For Research Resources or the National Institutes of Health. N.K. thanks Drs. Emily McMains and John Larkin for their critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naohiro Kato.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 1761 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato, N., Fujikawa, Y., Fuselier, T. et al. Luminescence detection of SNARE–SNARE interaction in Arabidopsis protoplasts. Plant Mol Biol 72, 433–444 (2010). https://doi.org/10.1007/s11103-009-9581-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-009-9581-z

Keywords

Navigation