Skip to main content

Using Tripartite Split-sfGFP for the Study of Membrane Protein–Protein Interactions

  • Protocol
  • First Online:
Arabidopsis Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2200))

Abstract

The study of protein–protein interaction (PPI) is critical for understanding cellular processes within biological systems. The conventional biomolecular fluorescence complementation (BiFC) or bipartite split-fluorescent protein (FP) is a noninvasive fluorescent-based technique that enables direct visualization of PPI in living cells once the two nonfluorescent fragments are brought into close vicinity. However, BiFC can potentially lead to a high background noise arising from an inherent feature of the irreversible self-assembly of the nonfluorescent fragments. Recently, the newly developed tripartite split-sfGFP method was demonstrated to detect membrane PPIs in plant cells without spurious background signals even when fusion proteins are highly expressed and accessible to the compartments of interaction. Here we describe a protocol for using the ß-Estradiol-inducible tripartite split-sfGFP assay for side-by-side analyses of in vivo PPI along with in situ subcellular localization of fusion proteins in agroinfiltrated Nicotiana benthamiana leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xing S, Wallmeroth N, Berendzen KW, Grefen C (2016) Techniques for the analysis of protein–protein interactions in vivo. Plant Physiol 171(2):727–758

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Boute N, Jockers R, Issad T (2002) The use of resonance energy transfer in high-throughput screening: BRET versus FRET. Trends Pharmacol Sci 23(8):351–354

    Article  CAS  Google Scholar 

  3. Morell M, Ventura S, Avilés FX (2009) Protein complementation assays: approaches for the in vivo analysis of protein interactions. FEBS Lett 583(11):1684–1691

    Article  CAS  Google Scholar 

  4. Kodama Y, Hu CD (2010) An improved bimolecular fluorescence complementation assay with a high signal-to-noise ratio. BioTechniques 49(5):793–805

    Article  CAS  Google Scholar 

  5. Kerppola TK (2008) Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu Rev Biophys 37(1):465–487

    Article  CAS  Google Scholar 

  6. Miller KE, Kim Y, Huh W-K, Park H-O (2015) Bimolecular fluorescence complementation (BiFC) analysis: advances and recent applications for genome-wide interaction studies. J Mol Biol 427(11):2039–2055

    Article  CAS  Google Scholar 

  7. Shyu YJ, Liu H, Deng X, Hu CD (2006) Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions. BioTechniques 40(1):61–66

    Article  CAS  Google Scholar 

  8. Horstman A, Tonaco IA, Boutilier K, Immink RG (2014) A cautionary note on the use of split-YFP/BiFC in plant protein-protein interaction studies. Int J Mol Sci 15(6):9628–9643

    Article  CAS  Google Scholar 

  9. Cabantous S, Terwilliger TC, Waldo GS (2005) Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat Biotechnol 23:102–107

    Article  CAS  Google Scholar 

  10. Brandizzi F, Fricker M, Hawes C (2002) A greener world: the revolution in plant bioimaging. Nat Rev Mol Cell Biol 3(7):520–530

    Article  CAS  Google Scholar 

  11. Min MK, Jang M, Lee M, Lee J, Song K, Lee Y, Choi KY, Robinson DG, Hwang I (2013) Recruitment of Arf1-GDP to Golgi by Glo3p-type ArfGAPs is crucial for golgi maintenance and plant growth. Plant Physiol 161(2):676–691

    Article  CAS  Google Scholar 

  12. Fujii Y, Kodama Y (2015) In planta comparative analysis of improved green fluorescent proteins with reference to fluorescence intensity and bimolecular fluorescence complementation ability. Plant Biotechnol 32(1):81–87

    Article  CAS  Google Scholar 

  13. Henry E, Toruño TY, Jauneau A, Deslandes L, Coaker G (2017) Direct and indirect visualization of bacterial effector delivery into diverse plant cell types during infection. Plant Cell 29(7):1555–1570

    Article  CAS  Google Scholar 

  14. Park E, Lee H-Y, Woo J, Choi D, Dinesh-Kumar SP (2017) Spatiotemporal monitoring of Pseudomonas syringae effectors via type III secretion using split fluorescent protein fragments. Plant Cell 29(7):1571–1584

    Article  CAS  Google Scholar 

  15. Cabantous S, Nguyen HB, Pedelacq JD, Koraichi F, Chaudhary A, Ganguly K, Lockard MA, Favre G, Terwilliger TC, Waldo GS (2013) A new protein–protein interaction sensor based on tripartite split-GFP association. Sci Rep 3:2854

    Article  Google Scholar 

  16. Finnigan GC, Duvalyan A, Liao EN, Sargsyan A, Thorner J (2016) Detection of protein–protein interactions at the septin collar in Saccharomyces cerevisiae using a tripartite split-GFP system. Mol Biol Cell 27(17):2708–2725

    Article  CAS  Google Scholar 

  17. Koraïchi F, Gence R, Bouchenot C, Grosjean S, Lajoie-Mazenc I, Favre G, Cabantous S (2018) High-content tripartite split-GFP cell-based assays to screen for modulators of small GTPase activation. J Cell Sci 131(1):jcs210419

    Article  Google Scholar 

  18. Liu TY, Chou WC, Chen WY, Chu CY, Dai CY, Wu PY (2018) Detection of membrane protein–protein interaction in planta based on dual-intein-coupled tripartite split-GFP association. Plant J 94(3):426–438

    Article  CAS  Google Scholar 

  19. Zhang J, Wang M, Tang R, Liu Y, Lei C, Huang Y, Nie Z, Yao S (2018) Transpeptidation-mediated assembly of tripartite split green fluorescent protein for label-free assay of sortase activity. Anal Chem 90(5):3245–3252

    Article  CAS  Google Scholar 

  20. Foglieni C, Papin S, Salvadè A, Afroz T, Pinton S, Pedrioli G, Ulrich G, Polymenidou M, Paganetti P (2017) Split GFP technologies to structurally characterize and quantify functional biomolecular interactions of FTD-related proteins. Sci Rep 7(1):14013

    Article  Google Scholar 

  21. Sergiy VA, Nataliia A (2019) Fluorescence protein complementation in microscopy: applications beyond detecting bi-molecular interactions. Methods Appl Fluoresc 7(1):012001

    Google Scholar 

  22. Chen J, Lalonde S, Obrdlik P, Noorani Vatani A, Parsa SA, Vilarino C, Revuelta JL, Frommer WB, Rhee SY (2012) Uncovering Arabidopsis membrane protein interactome enriched in transporters using mating-based split ubiquitin assays and classification models. Front Plant Sci 3:124

    Article  CAS  Google Scholar 

  23. Obrdlik P, El-Bakkoury M, Hamacher T, Cappellaro C, Vilarino C, Fleischer C, Ellerbrok H, Kamuzinzi R, Ledent V, Blaudez D, Sanders D, Revuelta JL, Boles E, André B, Frommer WB (2004) K+ channel interactions detected by a genetic system optimized for systematic studies of membrane protein interactions. Proc Natl Acad Sci U S A 101(33):12242–12247

    Article  CAS  Google Scholar 

  24. Johnsson N, Varshavsky A (1994) Split ubiquitin as a sensor of protein interactions in vivo. Proc Natl Acad Sci U S A 91(22):10340–10344

    Article  CAS  Google Scholar 

  25. Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  26. Voinnet O, Pinto YM, Baulcombe DC (1999) Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc Natl Acad Sci U S A 96(24):14147–14152

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Ministry of Science and Technology of the Republic of China (MOST 103-2311-B-007-012-MY2 and MOST 105-2621-M-007-001-MY3). I also appreciate Ms. Chang-Yi Chiu’s help with the proof-reading and for some comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzu-Yin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liu, TY. (2021). Using Tripartite Split-sfGFP for the Study of Membrane Protein–Protein Interactions. In: Sanchez-Serrano, J.J., Salinas, J. (eds) Arabidopsis Protocols . Methods in Molecular Biology, vol 2200. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0880-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0880-7_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0879-1

  • Online ISBN: 978-1-0716-0880-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics