Skip to main content
Log in

Class D and Bsister MADS-box genes are associated with ectopic ovule formation in the pistil-like stamens of alloplasmic wheat (Triticum aestivum L.)

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Homeotic transformation of stamens into pistil-like structures (pistillody) has been reported in cytoplasmic substitution (alloplasmic) lines of bread wheat (Triticum aestivum L.) that have the cytoplasm of a related wild species, Aegilops crassa. An ectopic ovule differentiates in the pistil-like stamen in the alloplasmic wheat. The SEEDSTICK (STK)—like class D MADS-box gene, wheat STK (WSTK), was expressed in the primordia of ectopic ovules in the pistil-like stamens as well as in the true pistil, suggesting that ectopic ovule formation results from WSTK expression in the pistil-like stamens of alloplasmic wheat. The ectopic ovule is abnormal as it fails to form complete integuments. Based on the expression pattern of WSTK and Bsister MADS-box gene, WBsis (wheat B sister ), we conclude that WSTK plays a role in determination of ovule identity in the pistil-like stamen, but complete ovule development fails due to aberrant expression of WBsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CMS:

Cytoplasmic male sterility

CS:

Chinese Spring

ORF:

Open reading frame

PCMS:

Photoperiod-sensitive cytoplasmic male sterility

Rf :

Restorer of fertility

N26:

Norin 26

WAG :

Wheat AGAMOUS

WBsis :

Wheat B sister

WSTK :

Wheat SEEDSTICK

References

  • Ambrose BA, Lerner DR, Ciceri P, Padilla CM, Yanofsky MF, Schmidt RJ (2000) Molecular and genetic analyses of the Silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol Cell 5:569–579. doi:10.1016/S1097-2765(00)80450-5

    Article  PubMed  CAS  Google Scholar 

  • Angenent GC, Colombo L (1996) Molecular control of ovule development. Trends Plant Sci 1:228–232

    Google Scholar 

  • Angenent GC, Franken J, Busscher M, van Dijken A, van Went JL, Dons HJM, van Tunen AJ (1995) A novel class of MADS box genes is involved in ovule development in Petunia. Plant Cell 7:1569–1582

    Article  PubMed  CAS  Google Scholar 

  • Becker A, Kaufmann K, Freialdenhoven A, Vincent C, Li MA, Saedler H, Theissen G (2002) A novel MADS-box gene subfamily with a sister-group relationship to class B floral homeotic genes. Mol Genet Genomics 266:942–950. doi:10.1007/s00438-001-0615-8

    Article  PubMed  CAS  Google Scholar 

  • Brambilla V, Battaglia R, Colombo M, Masiero S, Bencivenga S, Kater MM, Colombo L (2007) Genetic and molecular interactions between BELL1 and MADS box factors support ovule development in Arabidopsis. Plant Cell 19:2544–2556. doi:10.1105/tpc.107.051797

    Article  PubMed  CAS  Google Scholar 

  • Chase CD (2007) Cytoplasmic male sterility: a window to the world of plant mitochondrial–nuclear interactions. Trends Genet 23:81–90. doi:10.1016/j.tig.2006.12.004

    Article  PubMed  CAS  Google Scholar 

  • Colombo L, Franken J, Koetje E, van Went J, Dons HJM, Angenent GC, van Tunen AJ (1995) The petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7:1859–1868

    Article  PubMed  CAS  Google Scholar 

  • de Folter S, Shchennikova AV, Franken J, Busscher M, Baskar R, Grossniklaus U, Angenent GC, Immink RGH (2006) A Bsister MADS-box gene involved in ovule and seed development in petunia and Arabidopsis. Plant J 47:934–946. doi:10.1111/j.1365-313X.2006.02846.x

    Article  PubMed  CAS  Google Scholar 

  • Debeaujon I, Nesi N, Perez P, Devic M, Grandjean O, Caboche M, Lepiniec L (2003) Proanthocyanidin-accumulating cells in Arabidopsis testa: regulation of differentiation and role in seed development. Plant Cell 15:2514–2531. doi:10.1105/tpc.014043

    Article  PubMed  CAS  Google Scholar 

  • Dreni L, Jacchia S, Fornara F, Fornari M, Ouwerkerk PBE, An G, Colombo L, Kater MM (2007) The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice. Plant J 52:690–699. doi:10.1111/j.1365-313X.2007.03272.x

    Article  PubMed  CAS  Google Scholar 

  • Favaro R, Immink RGH, Ferioli V, Bernasconi B, Byzova M, Angenent GC, Kater MM, Colombo L (2002) Ovule-specific MADS-box proteins have conserved protein–protein interactions in monocot and dicot plants. Mol Genet Genomics 268:152–159. doi:10.1007/s00438-002-0746-6

    Article  PubMed  CAS  Google Scholar 

  • Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, Ditta G, Yanofsky MF, Kater MM, Colombo L (2003) MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell 15:2603–2611. doi:10.1105/tpc.015123

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evol Int J Org Evol 39:783–791. doi:10.2307/2408678

    Google Scholar 

  • Fitter JT, Thomas MR, Niu C, Rose RJ (2005) Investigation of Nicotiana tabacum (+) N. suaveolens cybrids with carpelloid stamens. J Plant Physiol 162:225–235. doi:10.1016/j.jplph.2004.02.006

    Article  PubMed  CAS  Google Scholar 

  • Gasser CS, Broadhvest J, Hauser BA (1998) Genetic analysis of ovule development. Annu Rev Plant Physiol Plant Mol Biol 49:1–24. doi:10.1146/annurev.arplant.49.1.1

    Article  PubMed  CAS  Google Scholar 

  • Goto K, Meyerowitz EM (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev 8:1548–1560. doi:10.1101/gad.8.13.1548

    Article  PubMed  CAS  Google Scholar 

  • Gross-Hardt R, Lenhard M, Laux T (2002) WUSCHEL signaling functions in interregional communication during Arabidopsis ovule development. Genes Dev 16:1129–1138. doi:10.1101/gad.225202

    Article  PubMed  CAS  Google Scholar 

  • Hama E, Takumi S, Ogihara Y, Murai K (2004) Pistillody is caused by alterations to the class-B MADS-box gene expression pattern in alloplasmic wheats. Planta 218:712–720. doi:10.1007/s00425-003-1157-6

    Article  PubMed  CAS  Google Scholar 

  • Hanson MR, Bentolila S (2004) Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16:S154–S169. doi:10.1105/tpc.015966

    Article  PubMed  CAS  Google Scholar 

  • Hill JP, Lord EM (1989) Floral development in Arabidopsis thaliana: a comparison of the wild type and the homeotic pisillata mutant. Can J Bot 67:2922–2936. doi:10.1139/b89-375

    Article  Google Scholar 

  • Hirabayashi C, Murai K (2009) Class C MADS-box gene AGAMOUS was duplicated in the wheat genome. Wheat Inf Serv 107:13–16

    Google Scholar 

  • Jack T (2004) Molecular and genetic mechanisms of floral control. Plant Cell 16:S1–S17. doi:10.1105/tpc.017038

    Article  PubMed  CAS  Google Scholar 

  • Jack T, Brockman LL, Meyerowitz EM (1992) The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68:683–697. doi:10.1016/0092-8674(92)90144-2

    Article  PubMed  CAS  Google Scholar 

  • Kang H-G, Jeon J-S, Lee S, An G (1998) Identification of class B and class C floral organ identity genes from rice plants. Plant Mol Biol 38:1021–1029. doi:10.1023/A:1006051911291

    Article  PubMed  CAS  Google Scholar 

  • Kapil RN, Tiwari SC (1978) The integumentary tapetum. Bot Rev 44:457–490. doi:10.1007/BF02860847

    Article  Google Scholar 

  • Kater MM, Dreni L, Colombo L (2006) Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis. J Exp Bot 57:3433–3444. doi:10.1093/jxb/erl097

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann K, Anfang N, Saedler H, Theissen G (2005) Mutant analysis, protein–protein interactions and subcellular localization of the Arabidopsis Bsister (ABS) protein. Mol Genet Genomics 274:103–118. doi:10.1007/s00438-005-0010-y

    Article  PubMed  CAS  Google Scholar 

  • Kaul MLH (1988) Male sterility in higher plant. Monographs on Theoretical and Applied Genetics 10. Springer–Verlag, Berlin Heidelberg

  • Kyozuka J, Shimamoto K (2002) Ectopic expression of OsMADS3, a rice ortholog of AGAMOUS, caused a homeotic transformation of lodicules to stamens in transgenic rice plants. Plant Cell Physiol 43:130–135. doi:10.1093/pcp/pcf010

    Article  PubMed  CAS  Google Scholar 

  • Linke B, Nothnagel T, Borner T (2003) Flower development in carrot CMS plants: mitochondria affect the expression of MADS box genes homologous to GLOBOSA and DEFICIENS. Plant J 34:27–37. doi:10.1046/j.1365-313X.2003.01703.x

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Butow RA (2006) Mitochondrial retrograde signaling. Annu Rev Genet 40:159–185. doi:10.1146/annurev.genet.40.110405.090613

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Dee ZP, Wittich P, Pe ME, Rigora D, Del Buono I, Sari Gorlia M, Kater MM, Colombo L (1999) OsMADS13, a novel rice MADS-box gene expressed during ovule development. Dev Genet 25:237–244. doi:10.1002/(SICI)1520-6408(1999)25:3<237::AID-DVG6>3.0.CO;2-L

    Article  PubMed  CAS  Google Scholar 

  • Meguro A, Takumi S, Ogihara Y, Murai K (2003) WAG, a wheat AGAMOUS homolog, is associated with development of pistil-like stamens in alloplasmic wheats. Sex Plant Reprod 15:221–230

    CAS  Google Scholar 

  • Mizumoto K, Hatano H, Hirabayashi C, Murai K, Takumi S (2009) Altered expression of wheat AINTEGUMENTA homolog, WANT-1, in pistil and pistil-like transformed stamen of an alloplasmic line with Aegilops crassa cytoplasm. Dev Genes Evol 219:175–187. doi:10.1007/s00427-009-0275-y

    Article  PubMed  CAS  Google Scholar 

  • Murai K (2001) Genetic effects of an alien cytoplasm on male and female fertility in wheat. Recent Res Dev Genet 1:47–54

    CAS  Google Scholar 

  • Murai K, Tsunewaki K (1993) Photoperiod-sensitive cytoplasmic male sterility in wheat with Aegilops crassa cytoplasm. Euphytica 67:41–48. doi:10.1007/BF00022723

    Article  Google Scholar 

  • Murai K, Tsunewaki K (1994) Genetic analysis on the fertility restration by Triticum aestivum cv. Chinese Spring against photoperiod-sensitive cytoplasmic male sterility. Jpn J Genet 69:195–202. doi:10.1266/jjg.69.195

    Article  Google Scholar 

  • Murai K, Murai R, Takumi S, Ogihara Y (1998) Cloning and characterization of cDNAs corresponding to the wheat MADS box genes. In: Slinkard AE (ed) Proceedings of the 9th International Wheat Genetic Symposium 1:89–94

  • Murai K, Takumi S, Koga H, Ogihara Y (2002) Pistillody, homeotic transformation of stamens into pistil-like structures, caused by nuclear–cytoplasm interaction in wheat. Plant J 29:169–182. doi:10.1046/j.0960-7412.2001.01203.x

    Article  PubMed  Google Scholar 

  • Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H-Y, Sakai H, Nagato Y (2003) SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development 130:705–718. doi:10.1242/dev.00294

    Article  PubMed  CAS  Google Scholar 

  • Nesi N, Debeaujon I, Jond C, Stewart AJ, Jenkins GI, Caboche M, Lepiniec L (2002) The TRANSPARENT TESTA 16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat. Plant Cell 14:2463–2479. doi:10.1105/tpc.004127

    Article  PubMed  CAS  Google Scholar 

  • Paolacci AR, Tanzarella OA, Porceddu E, Varotto S, Ciaffi M (2007) Molecular and phylogenetic analysis of MADS-box genes of MIKC type and chromosome location of SEP-like genes in wheat (Triticum aestivum L.). Mol Genet Genomics 278:689–708. doi:10.1007/s00438-007-0285-2

    Article  PubMed  CAS  Google Scholar 

  • Park SO, Zheng Z, Oppenheimer DG, Hauser BA (2005) The PRETTY FEW SEEDS2 gene encodes an Arabidopsis homeodomain protein that regulates ovule development. Development 132:841–849. doi:10.1242/dev.01654

    Article  PubMed  CAS  Google Scholar 

  • Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, Wisman E, Yanofsky MF (2003) Assesing the redundancy of MADS-box genes during carpel and ovule development. Nature 424:85–88. doi:10.1038/nature01741

    Article  PubMed  CAS  Google Scholar 

  • Reiser L, Modrusan Z, Margossian L, Samach A, Ohad N, Haughn GW, Fishcher RL (1995) The BELL1 gene encodes a homeodomain protein involved in pattern formation in the Arabidopsis ovule primordium. Cell 83:735–742. doi:10.1016/0092-8674(95)90186-8

    Article  PubMed  CAS  Google Scholar 

  • Riechmann JL, Meyerowitz EM (1997) MADS domain proteins in plant development. Biol Chem 378:1079–1101

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Saraike T, Shitsukawa N, Yamamoto Y, Hagita H, Iwasaki Y, Takumi S, Murai K (2007) Identification of a protein kinase gene associated with pistillody, homeotic transformation of stamens into pistil-like structures, in alloplasmic wheat. Planta 227:211–221. doi:10.1007/s00425-007-0608-x

    Article  PubMed  CAS  Google Scholar 

  • Shitsukawa N, Tahira C, Kassai K-I, Hirabayashi C, Shimizu T, Takumi S, Mochida K, Kwaura K, Ogihara Y, Murai K (2007) Genetic and epigenetic alteration among three homoeologous genes of a class E MADS box gene in hexaploid wheat. Plant Cell 19:1723–1737. doi:10.1105/tpc.107.051813

    Article  PubMed  CAS  Google Scholar 

  • Skinner DJ, Hill TA, Gasser CS (2004) Regulation of ovule development. Plant Cell 16:S32–S45. doi:10.1105/tpc.015933

    Article  PubMed  CAS  Google Scholar 

  • Sommer H, Beltran J-P, Huijser P, Pape H, Lonnig W-E, Saedler H, Schwarz-Sommer Z (1990) Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J 9:605–613

    PubMed  CAS  Google Scholar 

  • Teixeira RT, Farbos I, Glimelius K (2005a) Expression levels of meristem identity and homeotic genes are modified by nuclear–mitochondrial interactions in alloplasmic male-sterile lines of Brassica napus. Plant J 42:731–742. doi:10.1111/j.1365-313X.2005.02407.x

    Article  PubMed  CAS  Google Scholar 

  • Teixeira RT, Knorpp C, Glimelius K (2005b) Modified sucrose, starch, and ATP levels in two alloplasmic male-sterile lines of B. napus. J Exp Bot 56:1245–1253. doi:10.1093/jxb/eri120

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi:10.1093/nar/22.22.4673

    Article  PubMed  CAS  Google Scholar 

  • Trobner W, Ramirez L, Motte P, Hue I, Huijser P, Lonnig W-E, Saedler H, Sommer H, Schwarz-Sommer Z (1992) GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J 11:4693–4704

    PubMed  CAS  Google Scholar 

  • Tsunewaki K, Wang G-Z, Matsuoka Y (1996) Plasmon analysis of Triticum (wheat) and Aegilops. 1. Production of alloplasmic common wheats and their fertilities. Genes Genet Syst 71:293–311. doi:10.1266/ggs.71.293

    Article  PubMed  CAS  Google Scholar 

  • Tsunewaki K, Wang G-Z, Matsuoka Y (2002) Plasmon analysis of Triticum (wheat) and Aegilops. 2. Characterization and classification of 47 plasmons based on their effects on common wheat phenotype. Genes Genet Syst 77:409–427. doi:10.1266/ggs.77.409

    Article  PubMed  CAS  Google Scholar 

  • Villanueva JM, Broadhvest J, Hauser BA, Meister RJ, Schneitz K, Gasser CS (1999) INNER NO OUTER regulates abaxial–adaxial patterning in Arabidopsis ovules. Genes Dev 13:3160–3169. doi:10.1101/gad.13.23.3160

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Hirano H-Y (2006) Function and diversification of MADS-box genes in rice. ScientificWorldJournal 6:1923–1932. doi:10.1100/tsw.2006.320

    Article  PubMed  Google Scholar 

  • Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano H-Y (2004) The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell 16:500–509. doi:10.1105/tpc.018044

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Lee DY, Miyao A, Hirochika H, An G (2006) Functional diversification of the two C-class MADS box genes OsMADS3 and OsMADS58 in Oryza sativa. Plant Cell 18:15–28. doi:10.1105/tpc.105.037200

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Nickels R, McIntosh L (2001) A genome approach to mitochondrial–nuclear communication in Arabidopsis. Plant Physiol Biochem 39:345–353. doi:10.1016/S0981-9428(01)01254-2

    Article  CAS  Google Scholar 

  • Zahn LN, Feng B, Ma H (2006) Beyond the ABC-model: regulation of floral homeotic genes. In: Soltis DE, Leebens-Mack JH, Soltis PS (eds) Developmental genetics of the flower, advances in botanical research, vol 44. Academic Press, Amsterdam, pp 163–207

    Google Scholar 

  • Zhao T, Ni Z, Dai Y, Yao Y, Nie X, Sun Q (2006) Characterization and expression of 42 MADS-box genes in wheat (Triticum aestivum L.). Mol Genet Genomics 276:334–350. doi:10.1007/s00438-006-0147-3

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Saraike T, Yamamoto Y, Hagita H, Takumi S, Murai K (2008) orf260 cra, a novel mitochondrial gene, is associated with the homeotic transformation of stamen into pistil-like structures (pistillody) in alloplasmic wheat. Plant Cell Physiol 49:1723–1733. doi:10.1093/pcp/pcn143

    Article  PubMed  CAS  Google Scholar 

  • Zubko MK (2004) Mitochondrial tuning fork in nuclear homeotic functions. Trends Plant Sci 9:61–64. doi:10.1016/j.tplants.2003.12.001

    Article  PubMed  CAS  Google Scholar 

  • Zubko MK, Zubko EI, Patskovsky YV, Khvedynich OA, Fisahn J, Gleba YY, Schieder O (1996) Novel ‘homeotic’ CMS patterns generated in Nicotiana via cybridization with Hyoscyamus and Scopolia. J Exp Bot 47:1101–1110. doi:10.1093/jxb/47.8.1101

    Article  CAS  Google Scholar 

  • Zubko MK, Zubko EI, Ruban AV, Adler K, Mock H-P, Misera S, Gleba YY, Grimm B (2001) Extensive developmental and metabolic alterations in cybrids Nicotiana tabacum (+Hyoscyamus niger) are caused by complex nucleo-cytoplasmic incompatibility. Plant J 25:627–639. doi:10.1046/j.1365-313x.2001.00997.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the National Bioresource Project—Wheat (NBRP-KOMUGI) for providing wheat materials. This work was supported in part by a Grant-in-Aid for Scientific Research (C) from the Ministry of Education, Science and Culture of Japan (No. 17580009) and from the Fukui Prefectural Government (to K. M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Murai.

Additional information

K. Yamada and T. Saraike contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(XLS 18 kb)

(DOC 41 kb)

(XLS 15 kb)

(DOC 5 kb)

(DOC 2 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, K., Saraike, T., Shitsukawa, N. et al. Class D and Bsister MADS-box genes are associated with ectopic ovule formation in the pistil-like stamens of alloplasmic wheat (Triticum aestivum L.). Plant Mol Biol 71, 1–14 (2009). https://doi.org/10.1007/s11103-009-9504-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-009-9504-z

Keywords

Navigation