Skip to main content
Log in

Shared and novel molecular responses of mandarin to drought

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Drought is the most important stress experienced by citrus crops. A citrus cDNA microarray of about 6.000 genes has been utilized to identify transcriptomic responses of mandarin to water stress. As observed in other plant species challenged with drought stress, key genes for lysine catabolism, proline and raffinose synthesis, hydrogen peroxide reduction, vacuolar malate transport, RCI2 proteolipids and defence proteins such as osmotin, dehydrins and heat-shock proteins are induced in mandarin. Also, some aquaporin genes are repressed. The osmolyte raffinose could be detected in stressed roots while the dehydrin COR15 protein only accumulated in stressed leaves but not in roots. Novel drought responses in mandarin include the induction of genes encoding a new miraculin isoform, chloroplast β-carotene hydroxylase, oleoyl desaturase, ribosomal protein RPS13A and protein kinase CTR1. These results suggest that drought tolerance in citrus may benefit from inhibition of proteolysis, activation of zeaxanthin and linolenoyl synthesis, reinforcement of ribosomal structure and down-regulation of the ethylene response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agustí J, Zapater M, Iglesias DJ, Cercós M, Tadeo FR, Talón M (2007) Differential expression of putative 9-cis-epoxycarotenoid dioxygenases and abscisic acid accumulation in water stressed vegetative and reproductive tissues of citrus. Plant Sci 172:85–94. doi:10.1016/j.plantsci.2006.07.013

    Google Scholar 

  • Alexandersson E, Fraysse L, Sjöval-Larsen S, Gustavsson S, Fellert M, Karlsson M, Johanson U, Kjellbom P (2005) Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol 59:469–484. doi:10.1007/s11103-005-0352-1

    PubMed  CAS  Google Scholar 

  • Allakhverdiev SI, Kinooshita M, Innaba M, Suzuki I, Murata N (2001) Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt- induced damage in Synechococcus. Plant Physiol 125:1842–1853. doi:10.1104/pp.125.4.1842

    PubMed  CAS  Google Scholar 

  • Allen RD (1995) Dissection of oxiidative stress tolerance using transgenic plants. Plant Physiol 107:1049–1054

    PubMed  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. doi:10.1146/annurev.arplant.55.031903.141701

    PubMed  CAS  Google Scholar 

  • Avsian-Kretchmer O, Eshdat Y, Gueta-Dahan Y, Ben-Hayyim G (1999) Regulation of stress-induced phospholipid hydroperoxide glutathine peroxidase expression in citrus. Planta 209:469–477. doi:10.1007/s004250050750

    PubMed  CAS  Google Scholar 

  • Bañuls J, Serna MD, Legaz F, Talon M, Primo-Millo E (1997) Growth and gas exchange parameters of Citrus plants stressed with different salts. J Plant Physiol 150:194–199

    Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  • Bhatnagar-Mathur P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27:411–424. doi:10.1007/s00299-007-0474-9

    PubMed  CAS  Google Scholar 

  • Bies-Etheve N, Gaubier-Comella P, Debures A, Lasserre E, Jobet E, Raynal M, Cooke R, Delseny M (2008) Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Mol Biol 67:107–124. doi:10.1007/s11103-008-9304-x

    PubMed  CAS  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448. doi:10.1126/science.218.4571.443

    PubMed  Google Scholar 

  • Braam J, Davis RW (1990) Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell 60:357–364. doi:10.1016/0092-8674(90)90587-5

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    PubMed  CAS  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1203

    Google Scholar 

  • Bukau B, Weissman J, Horwich A (2006) Molecular chaperones and protein quality control. Cell 125:443–451. doi:10.1016/j.cell.2006.04.014

    PubMed  CAS  Google Scholar 

  • Cercós M, Soler G, Iglesias DJ, Gadea J, Forment J, Talón M (2006) Global analysis of gene expression during development and ripening of citrus fruit flesh. A proposed mechanism for citric acid utilization. Plant Mol Biol 62:513–527. doi:10.1007/s11103-006-9037-7

    PubMed  Google Scholar 

  • Cho EK, Hong CB (2005) Over-expression of tobacco NtHSP70–1 contributes to drought-stress tolerance in plants. Plant Cell Rep 25:349–358. doi:10.1007/s00299-005-0093-2

    PubMed  Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803

    CAS  Google Scholar 

  • Conklin PL, Williams EH, Last RL (1996) Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci USA 93:9970–9974. doi:10.1073/pnas.93.18.9970

    PubMed  CAS  Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223. doi:10.1046/j.1365-313X.1993.04020215.x

    CAS  Google Scholar 

  • Du J, Huang Y-P, Xi J, Cao M-J, Ni W-S, Zhu J-K, Oliver DJ, Xiang C-B (2008) Functional gene-mining for salt tolerance genes with the power of Arabidopsis. Plant J 56:653–664

    PubMed  CAS  Google Scholar 

  • Emmerlich V, Linka T, Hurth MA, Traub M, Martinoia E, Neuhaus HE (2003) The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier. Proc Natl Acad Sci USA 100:11122–11126. doi:10.1073/pnas.1832002100

    PubMed  CAS  Google Scholar 

  • Etheridge N, Hall BP, Schaller GE (2006) Progress report: ethylene signaling and responses. Planta 223:387–391. doi:10.1007/s00425-005-0163-2

    PubMed  CAS  Google Scholar 

  • Fiore A, Dall’Osto L, Fraser PD, Bassi R, Giuliano G (2006) Elucidation of the β-carotene hydroxylation pathway in Arabidopsis thaliana. FEBS Lett 580:4718–4722. doi:10.1016/j.febslet.2006.07.055

    PubMed  CAS  Google Scholar 

  • Forment J, Gadea J, Huerta L, Abizanda L, Agusti J, Alamar S, Alos E, Andres F, Beltran JP, Berbel A, Blazquez MA, Brumos J, Cañas LA, Cercós M, Colmenero-Flores JM, Conesa A, Estables B, Gandia M, Garcia-Martinez JL, Gimeno J, Gisbert A, Gomez G, Gonzalez-Candelas L, Granell A, Guerri J, Lafuente MT, Madueño F, Marcos JF, Martinez F, Martinez-Godoy MA, Miralles S, Moreno P, Navarro L, Pallas V, Perez-Amador M, Perez-Valle J, Pons C, Rodrigo I, Rodriguez PL, Royo C, Serrano R, Soler G, Tadeo F, Talon M, Terol J, Trenor M, Vaello L, Vicente O, Vidal C, Zacarias L, Conejero V (2005) Development of a citrus genome-wide EST collection and cDNA microarray as resources for genomic studies. Plant Mol Biol 57:375–391. doi:10.1007/s11103-004-7926-1

    PubMed  CAS  Google Scholar 

  • Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme- Takagi M, Shinozaki K, Yamaguchi-Shinozaki K (2005) AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17:3470–3488. doi:10.1105/tpc.105.035659

    PubMed  CAS  Google Scholar 

  • Gagne JM, Downes BP, Shiu S-H, Durski AM, Vierstra RD (2002) The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc Natl Acad Sci USA 99:11519–11524. doi:10.1073/pnas.162339999

    PubMed  CAS  Google Scholar 

  • Galili G, Tang G, Zhu X, Gakiere B (2001) Lysine catabolism: a stress and development super-regulated metabolic pathway. Curr Opin Plant Biol 4:261–266. doi:10.1016/S1369-5266(00)00170-9

    PubMed  CAS  Google Scholar 

  • Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA (2000) Highly hydrophilic proteins in prokaryotes and eukaryores are common during conditions of water deficit. J Biol Chem 275:5668–5674. doi:10.1074/jbc.275.8.5668

    PubMed  CAS  Google Scholar 

  • Gómez-Cadenas A, Tadeo FR, Talon M, Primo-Millo E (1996) Leaf abscission induced by ethylene in water stressed intact seedlings of Cleopatra mandarin requires previous abscisic acid accumulation in roots. Plant Physiol 112:401–408

    PubMed  Google Scholar 

  • Gutterson N, Reuber TL (2004) Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol 7:465–471. doi:10.1016/j.pbi.2004.04.007

    PubMed  CAS  Google Scholar 

  • Hara M, Terashima S, Kuboi T (2001) Characterization and cryoprotective activity of cold-responsive dehydrin from Citrus unshiu. J Plant Physiol 158:1333–1339. doi:10.1078/0176-1617-00600

    CAS  Google Scholar 

  • Heldt H-W (2005) Plant biochemistry. Elsevier, Amsterdam, pp 110–112

    Google Scholar 

  • Hoekstra FA, Golovina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438. doi:10.1016/S1360-1385(01)02052-0

    PubMed  CAS  Google Scholar 

  • Hon WC, Griffith M, Mlynarz A, Kwok YC, Yang DS (1995) Antifreeze proteins in winter rye are similar to pathogenesis-related proteins. Plant Physiol 109:879–889. doi:10.1104/pp.109.3.879

    PubMed  CAS  Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136. doi:10.1104/pp.122.4.1129

    PubMed  CAS  Google Scholar 

  • Hong-Bo S, Li-Ye C, Ming-An S (2008) Calcium as a versatile plant signal transducer under soil water stress. Bioessays 30:634–641. doi:10.1002/bies.20770

    PubMed  Google Scholar 

  • Huang D, Wu W, Abrams SR, Cutler AJ (2008) The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors. J Exp Bot 59:2991–3007. doi:10.1093/jxb/ern155

    PubMed  CAS  Google Scholar 

  • Huerta L, Forment J, Gadea J, Fagoaga C, Peña L, Pérez-Amador MA, García-Martínez JL (2008) Gene expression analysis in citrus reveals the role of gibberellins on photosynthesis and stress. Plant Cell Environ 31:1620–1633. doi:10.1111/j.1365-3040.2008.01870.x

    PubMed  CAS  Google Scholar 

  • Hundertmark M, Hincha DK (2008) LEA (Late Embriogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9:118–140. doi:10.1186/1471-2164-9-118

    PubMed  Google Scholar 

  • Hurth MA, Suh SJ, Krtzschmar T, Geis T, Bregante M, Gambale F, Martinoia E, Neuhaus HE (2005) Impaired pH homesotasis in Arabidopsis lacking the vacuolar dicarboxylate transporter and analysis of carboxylic acid transport across the tonoplast. Plant Physiol 137:901–910. doi:10.1104/pp.104.058453

    PubMed  CAS  Google Scholar 

  • Iglesias DJ, Cercós M, Colmenero-Flores JM, Naranjo MA, Ríos G, Carrera E, Ruiz-Rivero O, Lliso I, Morillon R, Tadeo FR, Talon M (2007) Physiology of citrus fruiting. Braz J Plant Physiol 19:333–362. doi:10.1590/S1677-04202007000400006

    CAS  Google Scholar 

  • Imai R, Chang L, Ohta A, Bray EA, Takagi M (1996) A lea-class gene from tomato confers salt and freezing tolerance when expressed in Saccharomyces cerevisiae. Gene 170:243–248. doi:10.1016/0378-1119(95)00868-3

    PubMed  CAS  Google Scholar 

  • Ito T, Kim GT, Shinozaki K (2000) Disruption of an Arabidopsis cytoplasmic ribosomal protein S13-homologous gene by transposon-mediated mutagenesis causes aberrant growth and development. Plant J 22:257–268. doi:10.1046/j.1365-313x.2000.00728.x

    PubMed  CAS  Google Scholar 

  • Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Corbajosa J, Tiedemann J, Kroj T, Parcy F, bZIP Research Group (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111

    PubMed  CAS  Google Scholar 

  • Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjövall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes enncoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369. doi:10.1104/pp.126.4.1358

    PubMed  CAS  Google Scholar 

  • Johnstone A, Thorpe R (1987) Immunochemistry in practice. Blackwell

  • Jones EW, Webb GC, Hiller MA (1997) Biogenesis and function of the yeast vacuole. In: Pringle JR, Broach JR, Jones EW (eds) The molecular and cellular biology of the yeast Saccharomyces. Cell cycle and cell biology, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 363–470

    Google Scholar 

  • Jung J, Won SY, Suh SC, Kim HR, Wing R, Jeong Y, Hwang I, Kim M (2007) The barley ERF-type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis. Planta 225:575–588. doi:10.1007/s00425-006-0373-2

    PubMed  CAS  Google Scholar 

  • Kavi Kishor PB, Hong Z, Miao G-H, Hu C-AA, Verma DPS (1995) Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    Google Scholar 

  • Kerr RA (1998) Sea-floor dust shows drought felled the Akkadian empire. Science 279:325–326. doi:10.1126/science.279.5349.325

    CAS  Google Scholar 

  • Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72:427–441. doi:10.1016/0092-8674(93)90119-B

    PubMed  CAS  Google Scholar 

  • Koskull-Döring P, Scharf K-D, Nover L (2007) The diversity of plant heat stress transcription factors. Trends Plant Sci 12:452–457. doi:10.1016/j.tplants.2007.08.014

    Google Scholar 

  • Kovacs D, Kalmar E, Torok Z, Tompa P (2008) Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins. Plant Physiol 147:381–390. doi:10.1104/pp.108.118208

    PubMed  CAS  Google Scholar 

  • Kurihara K, Beidker ML (1968) Taste-modifying protein from miracle fruit. Science 20:1241–1243. doi:10.1126/science.161.3847.1241

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    PubMed  CAS  Google Scholar 

  • Laskowski M, Kato I (1980) Protein inhibitors of proteinases. Annu Rev Biochem 49:593–626. doi:10.1146/annurev.bi.49.070180.003113

    PubMed  CAS  Google Scholar 

  • Lechner E, Achard P, Vansiri A, Potuschak T, Gnschik P (2006) F-box proteins everywhere. Curr Opin Plant Biol 99:631–638. doi:10.1016/j.pbi.2006.09.003

    Google Scholar 

  • Leigh RA, Ahmad NN, Wyn Jones RG (1981) Assessment of glycinebetaine and proline compartmentation by analysis of isolated beet vacuoles. Planta 153:34–41. doi:10.1007/BF00385315

    CAS  Google Scholar 

  • Leroux MR, Hartl FU (2000) Protein folding: versatility of the cytosolic chaperonin TRiC/CCT. Curr Biol 10:R260–R264. doi:10.1016/S0960-9822(00)00432-2

    PubMed  CAS  Google Scholar 

  • Lliso I, Tadeo FR, Phinney BS, Wilkerson CG, Talon M (2007) Protein changes in the albedo of citrus fruits on post-harvesting storage. J Agric Food Chem 55:9047–9053. doi:10.1021/jf071198a

    PubMed  CAS  Google Scholar 

  • MacCrackken MC (2008) Prospects for future climatic change and the reasons for early action. J Air Waste Manag Assoc 58:735–7886

    Article  CAS  Google Scholar 

  • Malmberg R, Messing J, Sussex I (1985) Molecular biology of plants. A Laboratory Course Manual. Cold Spring Harbor Laboratory Press, New York, p 41

    Google Scholar 

  • Medina J, Ballesteros ML, Salinas J (2007) Phylogenetic and functional analysis of Arabidopsis RCI2 genes. J Exp Bot 58:4333–4346. doi:10.1093/jxb/erm285

    PubMed  CAS  Google Scholar 

  • Mehouachi J, Gómez-Cadenas A, Primo-Millo E, Talon M (2005) Antagonistic changes between abscisic acid and gibberellins in citrus fruits subjected to a series of different water conditions. J Plant Growth Regul 24:179–187. doi:10.1007/s00344-004-0001-y

    Google Scholar 

  • Miquel MF, Browse JA (1994) High-oleate oilseeds fail to develop at low temperature. Plant Physiol 106:421–427

    PubMed  CAS  Google Scholar 

  • Mitsuya S, Taniguchi M, Miyake H, Takabe T (2005) Disruption of RCI2A leads to over- accumulation of Na+ and increased salt sensitivity in Arabidopsis thaliana plants. Planta 222:1001–1009. doi:10.1007/s00425-005-0043-9

    PubMed  CAS  Google Scholar 

  • Mitsuya S, Taniguchi M, Miyake H, Takabe T (2006) Overexpression of RCI2A decreases Na+ uptake and mitigates salinity-induced damages in Arabidopsis thaliana plants. Physiol Plant 128:95–102. doi:10.1111/j.1399-3054.2006.00714.x

    CAS  Google Scholar 

  • Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-Shinozaki K, Matsumoto K, Shinozaki K (1996) A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc Natl Acad Sci USA 93:765–7699. doi:10.1073/pnas.93.2.765

    PubMed  CAS  Google Scholar 

  • Molinari HBC, Marur CJ, Filho JCB, Kobayashi AK, Pileggi M, Junior RPL, Pereira LFP, Vieira LGE (2004) Osmotic adjustment in transgenic citrus rootstock Carrizo citrange (Citrus cinensis Osb. X Poncirus trifoliata L. Raf.) overproducing proline. Plant Sci 167:1375–1381. doi:10.1016/j.plantsci.2004.07.007

    CAS  Google Scholar 

  • Mulet JM, Leube MP, Kron SJ, Rios G, Fink GR, Serrano R (1999) A novel mechanism of ion homeostasis and salt tolerance in yeast: the Hal4 and Hal5 protien kinases modulate the Trk1–Trk2 potassium transporter. Mol Cell Biol 19:3328–3337

    PubMed  CAS  Google Scholar 

  • Nanjo T, Kobayashi M, Yoshiba Y, Sanada Y, Wada K, Tsukaya H, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (1999) Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana. Plant J 18:185–193. doi:10.1046/j.1365-313X.1999.00438.x

    PubMed  CAS  Google Scholar 

  • Narasimhan ML, Coca MA, Jin J, Yamauchi T, Ito Y, Kadowaki T, Kim KK, Pardo JM, Damsz B, Hasegawa PM, Yun DJ, Bressan RA (2005) Osmotin is a homolog of mammalian adiponectin and controls apoptosis in yeast through a homolog of mammalian adiponectin receptor. Mol Cell 17:171–180. doi:10.1016/j.molcel.2004.11.050

    PubMed  CAS  Google Scholar 

  • Navarre C, Goffeau A (2000) Membrane hyperpolarization and salt sensitivity induced by deletion of PMP3, a highly conserved small protein of yeast plasma membrane. EMBO J 19:2515–2524. doi:10.1093/emboj/19.11.2515

    PubMed  CAS  Google Scholar 

  • Netting AG (2002) pH, abscisic acid and the integration of metabolism in plants under stressed and non-stressed conditions. II. Modifications in modes of metabolism induced by variation in the tension on the water column and by stress. J Exp Bot 53:151–173. doi:10.1093/jexbot/53.367.151

    PubMed  CAS  Google Scholar 

  • Nishizawa A, Yabuta Y, Shigeoka S (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147:1251–1263. doi:10.1104/pp.108.122465

    PubMed  CAS  Google Scholar 

  • Nylander M, Svensson J, Palva ET, Welin BV (2001) Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol 45:263–279. doi:10.1023/A:1006469128280

    PubMed  CAS  Google Scholar 

  • Okuley J, Lightner J, Feldmann K, Yadav N, Lark E, Browse J (1994) Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6:147–158

    PubMed  CAS  Google Scholar 

  • Ozturk ZN, Talame V, Dehyholos M, Michalowski CB, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert HJ (2002) Monitoring large-scale changes in transcript abundance in drought- and salt-stressed barley. Plant Mol Biol 48:551–573. doi:10.1023/A:1014875215580

    CAS  Google Scholar 

  • Parry MAJ, Flexas J, Medrano H (2005) Prospects for crop production under drought: research priorities and future directions. Ann Appl Biol 147:211–226. doi:10.1111/j.1744-7348.2005.00032.x

    Google Scholar 

  • Pérez-Pérez JG, Syvertsen JP, Botía P, García-Sanchez F (2007) Leaf water relations and net gas exchange responses of salinized carrizo citrange seedlings during drought stress and recovery. Ann Bot (Lond) 11:335–345. doi:10.1093/aob/mcm113

    Google Scholar 

  • Pnueli L, Liang H, Rozenberg M, Mittler R (2003) Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient Arabidopsis plantss. Plant J 34:187–203. doi:10.1046/j.1365-313X.2003.01715.x

    PubMed  CAS  Google Scholar 

  • Porat R, Pavoncello D, Lurie S, McCollum TG (2002) Identification of a grapefruit cDNA belonging to a unique classs of citrus dehydrins and characterization of its expression pattern under temperature stress conditions. Physiol Plant 115:598–603. doi:10.1034/j.1399-3054.2002.1150414.x

    PubMed  CAS  Google Scholar 

  • Prieto-Dapena P, Castaño R, Almoguera C, Jordano J (2008) The ectopic overexpression of a seed-specific transcription factor, HaHSFA9, confers tolerance to severe dehydration in vegetative organs. Plant J 54:1004–1014. doi:10.1111/j.1365-313X.2008.03465.x

    CAS  PubMed  Google Scholar 

  • Puhakainen T, Hess MW, Makkela P, Svensson J, Heino P, Palva ET (2004) Overexpression of multiple dehydrin genes enhance tolerance to freezing stress in Arabidopsis. Plant Mol Biol 54:743–754. doi:10.1023/B:PLAN.0000040903.66496.a4

    PubMed  CAS  Google Scholar 

  • Ríos G, Naranjo MA, Iglesias DJ, Ruiz-Rivero O, Geraud M, López-García A, Talon M (2008) Characterization of hemizygous deletions in Citrus using array-comparative genomic hybridization and microsynteny comparison with the poplar genome. BMC Genomics 9:381. doi:10.1186/1471-2164-9-381

    PubMed  Google Scholar 

  • Rodriguez Milla MA, Maurer A, Rodriguez Huete A, Gustafson JP (2003) Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways. Plant J 36:602–615. doi:10.1046/j.1365-313X.2003.01901.x

    PubMed  CAS  Google Scholar 

  • Romero C, Bellés JM, Vayá JL, Serrano R, Culiañez-Maciá FA (1997) Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleitropic phenotypes include drought tolerance. Planta 201:293–297. doi:10.1007/s004250050069

    PubMed  CAS  Google Scholar 

  • Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD (2000) Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S- transferase/glutathione peroxidase. Plant Cell Physiol 41:1229–1234. doi:10.1093/pcp/pcd051

    PubMed  CAS  Google Scholar 

  • Ryan CA (2000) The systemin signaling pathway: differential activation of plant defensive genes. Biochim Biophys Acta 1477:112–121

    PubMed  CAS  Google Scholar 

  • Saha D, Prasad AM, Srinivasan R (2007) Pentatricopeptide repeat proteins and their emerging roles in plants. Plant Physiol Biochem 455:521–534. doi:10.1016/j.plaphy.2007.03.026

    Google Scholar 

  • Sanchez-Ballesta MT, Rodrigo MJ, Lafuente MT, Granell A, Zacarías L (2004) Dehydrin from citrus, which confers in vitro dehydration and freezing protection activity, is constitutive and highly expressed in the flavedo of fruit but responsive to cold and water stress in leaves. J Agric Food Chem 52:1950–1957. doi:10.1021/jf035216+

    PubMed  CAS  Google Scholar 

  • Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, coldand high- salinity stresses using a full-length cDNA microarray. Plant J 31:279–292. doi:10.1046/j.1365-313X.2002.01359.x

    PubMed  CAS  Google Scholar 

  • Shatters RG, Bausher MG, Hunter WB, Chaparro JX, Dang PM, Niedz RP, Mayer RT, McCollum TG, Sinisterra X (2004) Putative protease inhibitor gene discovery and transcript profiling during fruit development and leaf damage in grapefruit (Citrus paradisi Macf.). Gene 326:77–86. doi:10.1016/j.gene.2003.10.010

    PubMed  CAS  Google Scholar 

  • Shinozaki K, Yamagchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223

    PubMed  CAS  Google Scholar 

  • Singh NK, Bracker CA, Hasegawa PM, Handa AK, Buckel S, Hermodson MA, Pfankoch E, Regnier FE, Bressan RA (1987) Characterization of osmotin. A thaumatin-like protein associated with osmotic adaptation in plant cells. Plant Physiol 85:529–536. doi:10.1104/pp.85.2.529

    PubMed  CAS  Google Scholar 

  • Sjödin A, Bylesjö M, Skogström O, Eriksson D, Nilsson P, Rydén P, Jansson S, Karlsson J (2006) UPSC-BASE—Populus transcriptomics online. Plant J 48:806–817. doi:10.1111/j.1365-313X.2006.02920.x

    PubMed  Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochem 28:1057–1060. doi:10.1016/0031-9422(89)80182-7

    CAS  Google Scholar 

  • Stepansky A, Galili G (2003) Synthesis of the Arabidopsis bifunctional lysine- ketoglutarate reductase/sacsharopine dehydrogenase enzyme of lysine catabolism is concertedly regulated by metabolic and stress-associated signals. Plant Physiol 133:1407–1415. doi:10.1104/pp.103.026294

    PubMed  CAS  Google Scholar 

  • Stepansky A, Less H, Angelovici R, Aharon R, Zhu X, Galili G (2006) Lysine catabolism, an effective versatile regulator of lysine level in plants. Amino Acids 30:121–125. doi:10.1007/s00726-005-0246-1

    PubMed  CAS  Google Scholar 

  • Storey R, Walker RR (1999) Citrus and salinity. Sci Hortic (Amsterdam) 78:39–81. doi:10.1016/S0304-4238(98)00190-3

    CAS  Google Scholar 

  • Sun Z, Gantt E, Cunningham FX (1996) Cloning and functional analysis of the beta-carotene hydroxylase of Arabidopsis thaliana. J Biol Chem 271:24349–24355. doi:10.1074/jbc.271.40.24349

    PubMed  CAS  Google Scholar 

  • Sun W, Bernard C, Van de Cotte B, Van Montagu M, Verbruggen N (2001) At- HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J 27:407–415. doi:10.1046/j.1365-313X.2001.01107.x

    PubMed  CAS  Google Scholar 

  • Tadeo FR, Cercós M, Colmenero-Flores JM, Iglesias DJ, Naranjo MA, Ríos G, Carrera E, Ruiz-Rivero O, Lliso I, Morillon R, Ollitrault P, Talon M (2008) Molecular physiology of development and quality of citrus. Adv Bot Res 49:147–223. doi:10.1016/S0065-2296(08)00004-9

    Google Scholar 

  • Taji T, Ohsumi C, Iuchi S, Seki M, Kasuga M, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K (2002) Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J 29:417–426. doi:10.1046/j.0960-7412.2001.01227.x

    PubMed  CAS  Google Scholar 

  • Takeda S, Matsuokka M (2008) Genetic approaches to crop improvement: responding to environmental and population changes. Nat Rev Genet 9:444–457. doi:10.1038/nrg2342

    PubMed  CAS  Google Scholar 

  • Talon M, Gmitter FG Jr (2008) Citrus genomics. Int J Plant Genomics 2008:528361

    PubMed  Google Scholar 

  • Terol J, Conesa A, Colmenero JM, Cercos M, Tadeo FR, Agustí J, Alós E, Andres F, Soler G, Brumos J, Iglesias DJ, Götz S, Legaz F, Argout X, Courtois B, Ollitrault P, Dossat C, Wincker P, Morillon R, Talon M (2007) Analysis of 13000 unique Citrus clusters associated with fruit quality, production and salinity tolerance. BMC Genomics 8:31. doi:10.1186/1471-2164-8-31

    PubMed  Google Scholar 

  • Terol J, Naranjo MA, Ollitrault P, Talon M (2008) Development of genomic resources for Citrus clementina: characterization of three deep-coverage BAC libraries and analysis of 46,000 BAC end sequences. BMC Genomics 9:423. doi:10.1186/1471-2164-9-423

    PubMed  Google Scholar 

  • Theerasilp S, Hitotsuya H, Nakajo S, Nakaya K, Nakamura Y, Kurihara Y (1989) Complete amino-acid sequence and structure characterization of the taste- modifying protein miraculin. J Biol Chem 264:6655–6659

    PubMed  CAS  Google Scholar 

  • Tian L, Magallanes LM, Musetti V, DellaPenna D (2003) Functional analysis of beta- and varepsilon- ring carotenoid hydroxylases in Arabidopsis. Plant Cell 15:1320–1329. doi:10.1105/tpc.011403

    PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrilamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354. doi:10.1073/pnas.76.9.4350

    PubMed  CAS  Google Scholar 

  • Tsukuda S, Gomi K, Yamamoto H, Akimitsu K (2006) Characterization of cDNAs encoding two distinct miraculin-like proteins and stress modulation of the corresponding mRNAs in Citrus jambhiri Lush. Plant Mol Biol 60:125–136. doi:10.1007/s11103-005-2941-4

    PubMed  CAS  Google Scholar 

  • Tuba Z, Lichtenhaler HK (2007) Long-term acclimation of plants to elevated CO2 and its interaction with stresses. Ann N Y Acad Sci 1113:135–146. doi:10.1196/annals.1391.021

    PubMed  CAS  Google Scholar 

  • Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotechnol 17:113–122

    PubMed  CAS  Google Scholar 

  • Van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162. doi:10.1146/annurev.phyto.44.070505.143425

    PubMed  Google Scholar 

  • Vandenbroucke K, Robbens S, Vandepoele K, Inze D, Van de Peer Y, Van Breusegem F (2008) Hydrogen peroxide-induced gene expression across kingdoms: a comparative analysis. Mol Biol Evol 25:507–516. doi:10.1093/molbev/msm276

    PubMed  CAS  Google Scholar 

  • Walsh P, Bursac D, Law YC, Cyr D, Lithgow T (2004) The J-protein family: modulating protein assembly, disassembly and translocation. EMBO Rep 5:567–571. doi:10.1038/sj.embor.7400172

    PubMed  CAS  Google Scholar 

  • Wang J, Zhang H, Allen RD (1999) Overexpression of an Arabidopsis peroxisomal ascorbate peroxidase gene in tobacco increases protection against oxidative stress. Plant Cell Physiol 40:725–732

    PubMed  CAS  Google Scholar 

  • Weigel D, Glazebrook J (2002) Arabidopsis. A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 143–170

    Google Scholar 

  • Weiss H, Bradley RS (2001) What drives societal collapse? Science 291:609–610. doi:10.1126/science.1058775

    PubMed  CAS  Google Scholar 

  • Xiao B, Huang Y, Tang N, Xiong L (2007) Over-expression of a LEA gene in rice improves drought resistance under field conditions. Theor Appl Genet 115:35–46. doi:10.1007/s00122-007-0538-9

    PubMed  CAS  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho T-HD, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

    PubMed  CAS  Google Scholar 

  • Zhang JZ, Creelman RA, Zhu JK (2004) From laboratory to field. Using information from Arabidopsis to engineer salt, cold and drought tolerance in crops. Plant Physiol 135:615–621. doi:10.1104/pp.104.040295

    PubMed  CAS  Google Scholar 

  • Zhu J-K (2001) Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol 4:401–406. doi:10.1016/S1369-5266(00)00192-8

    PubMed  CAS  Google Scholar 

  • Zhu X, Granier F, Bouchez D, Galili G (2001) A T-DNA insertion knockout of the bifunctional lysine-ketoglutarate reductase/saccharopine dehydrogenase gene elevates lysine levels in Arabidopsis seeds. Plant Physiol 126:1539–1545. doi:10.1104/pp.126.4.1539

    PubMed  CAS  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632. doi:10.1104/pp.104.046367

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank María J. Rodrigo and Lorenzo Zacarías (IATA, Valencia) for the Escherichia coli M15 strain expressing CrCOR15. This work was funded by “Ministerio de Educación y Ciencia” (Madrid, BFU2005-06388-C04-01 and AGL2007-65437-C04-01 grants) and “Consellería de Agricultura, Pesca y Alimentación de la Generalitat Valenciana” (Valencia, “Proyecto Genoma Cítricos”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Serrano.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gimeno, J., Gadea, J., Forment, J. et al. Shared and novel molecular responses of mandarin to drought. Plant Mol Biol 70, 403–420 (2009). https://doi.org/10.1007/s11103-009-9481-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-009-9481-2

Keywords

Navigation