Skip to main content
Log in

Characterization of promoter elements required for expression and induction by sucrose of the Arabidopsis COX5b-1 nuclear gene, encoding the zinc-binding subunit of cytochrome c oxidase

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Arabidopsis COX5b-1 encodes an isoform of the zinc binding subunit 5b of mitochondrial cytochrome c oxidase. A promoter region required for expression and induction by sucrose of this gene was analyzed using plants stably transformed with mutagenized promoter fragments fused to the gus reporter gene. Promoter dependent expression is absolutely dependent on a G-box present at −228 from the translation start site. This element interacts in vitro and in vivo with transcription factors from the bZip family, preferentially with the abscisic acid-responsive element binding factor AREB2/ABF4. A region located upstream of the G-box (−333/−259) contains elements with the core sequence ATCATT and distalB-like sequences (CCACTTG) that are required for expression in vegetative tissues. These sequences bind different sets of proteins present in plant nuclear extracts and participate in induction by sucrose (ATCATT) and abscisic acid (distalB) of the COX5b-1 promoter. We propose that the COX5b-1 promoter has acquired novel regulatory mechanisms during evolution after gene duplication. These novel mechanisms have allowed the diversification of expression patterns, but also the conservation of some responses that, as induction by sucrose, are shared by COX5b-1 and other genes encoding components of the mitochondrial respiratory chain. Conservation of these responses may be a pre-requisite for the successful incorporation of new regulatory elements in this class of genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

COX:

Cytochrome c oxidase

EMSA:

Electrophoretic mobility shift assay

GUS:

β-Glucuronidase

MUG:

4-Methylumbelliferyl β-d-glucuronide

X-gluc:

5-Bromo-4-chloro-3-indolyl-β-d-glucuronic acid

References

  • Attallah CV, Welchen E, Gonzalez DH (2007a) The promoters of Arabidopsis thaliana genes AtCOX17-1 and -2, encoding a copper chaperone involved in cytochrome c oxidase biogenesis, are preferentially active in roots and anthers and induced by biotic and abiotic stress. Physiol Plant 1290:123–134. doi:10.1111/j.1399-3054.2006.00776.x

    Article  Google Scholar 

  • Attallah CV, Welchen E, Pujol C, Bonnard G, Gonzalez DH (2007b) Characterization of Arabidopsis thaliana genes encoding functional homologues of the yeast metal chaperone Cox19p, involved in cytochrome c oxidase biogenesis. Plant Mol Biol 65:343–355. doi:10.1007/s11103-007-9224-1

    Article  PubMed  CAS  Google Scholar 

  • Barrientos A, Barrios MH, Valnot I, Rötig A, Rustin P, Tzagoloff A (2002) Cytochrome oxidase in health and disease. Gene 286:53–63. doi:10.1016/S0378-1119(01)00803-4

    Article  PubMed  CAS  Google Scholar 

  • Capaldi RA (1990) Structure and function of cytochrome c oxidase. Annu Rev Biochem 59:569–596. doi:10.1146/annurev.bi.59.070190.003033

    Article  PubMed  CAS  Google Scholar 

  • Charrier B, Champion A, Henry Y, Kreis M (2002) Expression profiling of the whole Arabidopsis shaggy-like kinase multigene family by real-time reverse transcriptase-polymerase chain reaction. Plant Physiol 130:577–590. doi:10.1104/pp.009175

    Article  PubMed  CAS  Google Scholar 

  • Choi H-I, Hong J-H, Ha J-O, Kang J-K, Kim SY (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275:1723–1730. doi:10.1074/jbc.275.3.1723

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. doi:10.1046/j.1365-313x.1998.00343.x

    Article  PubMed  CAS  Google Scholar 

  • Conlon I, Raff M (1999) Size control in animal development. Cell 96:235–244. doi:10.1016/S0092-8674(00)80563-2

    Article  PubMed  CAS  Google Scholar 

  • Curi GC, Welchen E, Chan RL, Gonzalez DH (2003) Nuclear and mitochondrial genes encoding cytochrome c oxidase subunits respond differently to the same metabolic factors. Plant Physiol Biochem 41:689–693. doi:10.1016/S0981-9428(03)00093-7

    Article  CAS  Google Scholar 

  • Dhar SS, Ongwijitwat S, Wong-Riley MTT (2008) Nuclear respiratory factor 1 regulates all ten nuclear-encoded subunits of cytochrome c oxidase in neurons. J Biol Chem 283:3120–3129. doi:10.1074/jbc.M707587200

    Article  PubMed  CAS  Google Scholar 

  • Ezcurra I, Ellerström M, Wycliffe P, Stalberg K, Rask L (1999) Interaction between composite elements in the napA promoter: both the B-box ABA-responsive complex and the RY/G complex are necessary for seed-specific expression. Plant Mol Biol 40:699–709. doi:10.1023/A:1006206124512

    Article  PubMed  CAS  Google Scholar 

  • Felitti SA, Gonzalez DH (1998) Carbohydrates modulate the expression of the sunflower cytochrome c gene at the mRNA level. Planta 206:410–415. doi:10.1007/s004250050416

    Article  CAS  Google Scholar 

  • Giegé P, Sweetlove LJ, Cognat V, Leaver CJ (2005) Coordination of nuclear and mitochondrial genome expression during mitochondrial biogenesis in Arabidopsis. Plant Cell 17:1497–1512. doi:10.1105/tpc.104.030254

    Article  PubMed  Google Scholar 

  • Gietz D, Jean A, Woods RA, Schiestl RH (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20:1425. doi:10.1093/nar/20.6.1425

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez DH, Welchen E, Attallah CV, Comelli RN, Mufarrege EM (2007) Transcriptional coordination of the biogenesis of the oxidative phosphorylation machinery in plants. Plant J 51:105–116. doi:10.1111/j.1365-313X.2007.03121.x

    Article  PubMed  CAS  Google Scholar 

  • Grossman LI, Lomax MI (1997) Nuclear genes for cytochrome c oxidase. Biochim Biophys Acta 1352:174–192

    PubMed  CAS  Google Scholar 

  • Heim MA, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey PC (2003) The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol Biol Evol 20:735–747. doi:10.1093/molbev/msg088

    Article  PubMed  CAS  Google Scholar 

  • Hull GA, Devic M (1995) The beta-glucuronidase (gus) reporter gene system. Gene fusions; spectrophotometric, fluorometric, and histochemical detection. In: Jones H (ed) Methods in plant molecular biology, vol 49: plant gene transfer and expression protocols. Humana Press Inc, Totowa, pp 125–141

    Chapter  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 20:3901–3907

    Google Scholar 

  • Kang J-Y, Choi H-I, Im M-I, Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14:343–357. doi:10.1105/tpc.010362

    Article  PubMed  CAS  Google Scholar 

  • Li G, Hall TC (1999) Footprinting in vivo reveals changing profiles of multiple factor interactions with the β-phaseolin promoter during embryogenesis. Plant J 18:633–641. doi:10.1046/j.1365-313x.1999.00490.x

    Article  PubMed  CAS  Google Scholar 

  • Maliga P, Klessig DF, Cashmore AR, Gruissem W, Varner JE (1995) Identification of promoter sequences that interact with DNA-binding proteins. In: Methods in plant molecular biology. A laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 233–260

  • Manevski A, Bertoni G, Bardet C, Tremousaygue D, Lescure B (2000) In synergy with various cis-acting elements, plant interstitial telomere motifs regulate gene expression in Arabidopsis root meristems. FEBS Lett 483:43–46. doi:10.1016/S0014-5793(00)02056-1

    Article  PubMed  CAS  Google Scholar 

  • Meijer AH, Ouwekerk PBF, Hoge HC (1998) Vectors for transcription factor cloning and target site identification by means of genetic selection in yeast. Yeast 14:1407–1416. doi:10.1002/(SICI)1097-0061(199811)14:15<1407::AID-YEA325>3.0.CO;2-M

    Article  PubMed  CAS  Google Scholar 

  • Menkens AE, Schindler U, Cashmore AR (1995) The G-box: an ubiquitous regulatory DNA element in plants bound by the GBF family of bZip proteins. Trends Biochem Sci 20:506–510. doi:10.1016/S0968-0004(00)89118-5

    Article  PubMed  CAS  Google Scholar 

  • Palena CM, Gonzalez DH, Guelman S, Chan RL (1998) Expression of sunflower homeodomain containing proteins in Escherichia coli: purification and functional studies. Protein Expr Purif 13:97–103. doi:10.1006/prep.1998.0875

    Article  PubMed  CAS  Google Scholar 

  • Richter O-MH, Ludwig B (2003) Cytochrome c oxidase—structure, function, and physiology of a redox-driven molecular machine. Rev Physiol Biochem Pharmacol 147:47–74. doi:10.1007/s10254-003-0006-0

    Article  PubMed  CAS  Google Scholar 

  • Rizzuto R, Sandonà D, Brini M, Capaldi RA, Bisson R (1991) The most conserved nuclear-encoded polypeptide of cytochrome c oxidase is the putative zinc-binding subunit: primary structure of subunit V from the slime mold Dictyostelium discoideum. Biochim Biophys Acta 1129:100–104

    PubMed  CAS  Google Scholar 

  • Rook F, Hadingham SA, Li Y, Bevan MW (2006) Sugar and ABA response pathways and the control of gene expression. Plant Cell Environ 29:426–434. doi:10.1111/j.1365-3040.2005.01477.x

    Article  PubMed  CAS  Google Scholar 

  • Rubio V, Linhares F, Solano R, Martín AC, Iglesias J, Leyva A, Paz-Ares J (2001) A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev 15:2122–2133. doi:10.1101/gad.204401

    Article  PubMed  CAS  Google Scholar 

  • Salinas J, Oeda K, Chua N-H (1992) Two G-box-related sequences confer different expression patterns in transgenic tobacco. Plant Cell 4:1485–1493

    Article  PubMed  CAS  Google Scholar 

  • Schindler U, Menkens AE, Beckmann H, Ecker JR, Cashmore AR (1992) Heterodimerization between light-regulated and ubiquitously expressed Arabidopsis GBF bZip proteins. EMBO J 11:1261–1273

    PubMed  CAS  Google Scholar 

  • Sedmak J, Grossberg S (1977) A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G-250. Anal Biochem 79:544–552. doi:10.1016/0003-2697(77)90428-6

    Article  PubMed  CAS  Google Scholar 

  • Sibéril Y, Doireau P, Gantet P (2001) Plant bZIP G-box binding factors. Modular structure and activation mechanisms. Eur J Biochem 268:5655–5666. doi:10.1046/j.0014-2956.2001.02552.x

    Article  PubMed  Google Scholar 

  • Smith DB, Johnson KS (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67:31–40. doi:10.1016/0378-1119(88)90005-4

    Article  PubMed  CAS  Google Scholar 

  • Toledo-Ortiz G, Huq E, Quail PH (2003) The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15:1749–1770. doi:10.1105/tpc.013839

    Article  PubMed  CAS  Google Scholar 

  • Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA 97:11632–11637. doi:10.1073/pnas.190309197

    Article  PubMed  CAS  Google Scholar 

  • Welchen E, Gonzalez DH (2005) Differential expression of the Arabidopsis cytochrome c genes Cytc-1 and Cytc-2: evidence for the involvement of TCP-domain protein binding elements in anther- and meristem-specific expression of the Cytc-1 gene. Plant Physiol 139:88–100. doi:10.1104/pp.105.065920

    Article  PubMed  CAS  Google Scholar 

  • Welchen E, Gonzalez DH (2006) Overrepresentation of elements recognized by TCP-domain transcription factors in the upstream regions of nuclear genes encoding components of the mitochondrial oxidative phosphorylation machinery. Plant Physiol 141:540–545. doi:10.1104/pp.105.075366

    Article  PubMed  CAS  Google Scholar 

  • Welchen E, Chan RL, Gonzalez DH (2002) Metabolic regulation of genes encoding cytochrome c and cytochrome c oxidase subunit Vb in Arabidopsis. Plant Cell Environ 25:1605–1615. doi:10.1046/j.1365-3040.2002.00940.x

    Article  CAS  Google Scholar 

  • Welchen E, Chan RL, Gonzalez DH (2004) The promoter of the Arabidopsis nuclear gene COX5b-1, encoding subunit 5b of the mitochondrial cytochrome c oxidase, directs tissue-specific expression by a combination of positive and negative regulatory elements. J Exp Bot 55:1997–2004. doi:10.1093/jxb/erh223

    Article  PubMed  CAS  Google Scholar 

  • Wingler A, Roitsch T (2008) Metabolic regulation of leaf senescence: interactions of sugar signalling with biotic and abiotic stress responses. Plant Biol (Stuttg) 10(Suppl 1):50–52. doi:10.1111/j.1438-8677.2008.00086.x

    Article  Google Scholar 

  • Yamasaki H, Abdel-Ghany SE, Cohu CM, Kobayashi Y, Shikanai T, Pilon M (2007) Regulation of copper homeostasis by micro-RNA in Arabidopsis. J Biol Chem 282:16369–16378. doi:10.1074/jbc.M700138200

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Elina Welchen for advice and helpful comments. This work was supported by grants from CONICET, ANPCyT (Agencia Nacional de Promoción Científica y Tecnológica), and Universidad Nacional del Litoral. RNC is a fellow of ANPCyT; ILV is a fellow of CONICET (Argentina); DHG is a member of the same Institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel H. Gonzalez.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Comelli, R.N., Viola, I.L. & Gonzalez, D.H. Characterization of promoter elements required for expression and induction by sucrose of the Arabidopsis COX5b-1 nuclear gene, encoding the zinc-binding subunit of cytochrome c oxidase. Plant Mol Biol 69, 729–743 (2009). https://doi.org/10.1007/s11103-008-9451-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9451-0

Keywords

Navigation