Skip to main content
Log in

Introns control expression of sucrose transporter LeSUT1 in trichomes, companion cells and in guard cells

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

In solanaceous plants such as tomato and tobacco, the sucrose transporter SUT1 is crucial for phloem loading. Using GUS as a reporter, the promoter and other regulatory cis elements required for the tomato LeSUT1 expression were analyzed by heterologous expression of translational chimeric constructs in tobacco. Although LeSUT1 is highly expressed at the RNA level, GUS expression under the control of a 1.8 kb LeSUT1 promoter resulted in few plants expressing GUS. In GUS-positive transformants, expression levels were low and limited to leaf phloem. Increasing or decreasing the length of LeSUT1 promoter did not lead to a significant increase in positive transformants or higher expression levels. Translational fusion of GUS to the LeSUT1 C-terminus in a construct containing all exons and introns and the 3′-UTR led to a higher number of positive transformants and many plants with high GUS activity. LeSUT1 expression was detected in ab- and adaxial phloem companion cells, trichomes and guard cells. The role of individual introns in LeSUT1 expression was further analyzed by placing each LeSUT1 intron into the 5′-UTR within the 2.3 kb LeSUT1 promoter construct. Results showed remarkable functions for the three introns for SUT1 expression in trichomes, guard cells and phloem cells. Intron 3 is responsible for expression in trichomes, whereas intron 2 is necessary for expression in companion cells and guard cells. The combination of all introns is required for the full expression pattern in phloem, guard cells and trichomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aoki N, Hirose T, Takahashi S, Ono K, Ishimaru K, Ohsugi R (1999) Molecular cloning and expression analysis of a gene for a sucrose transporter in maize (Zea mays L.). Plant Cell Physiol 40:1072–1078

    PubMed  CAS  Google Scholar 

  • Boorer KJ, Loo DD, Frommer WB, Wright EM (1996) Transport mechanism of the cloned potato H+/sucrose cotransporter StSUT1. J Biol Chem 271:25139–25144. doi:10.1074/jbc.271.41.25139

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  PubMed  CAS  Google Scholar 

  • Bürkle L, Hibberd JM, Quick WP, Kuhn C, Hirner B, Frommer WB (1998) The H+-sucrose cotransporter NtSUT1 is essential for sugar export from tobacco leaves. Plant Physiol 118:59–68. doi:10.1104/pp.118.1.59

    Article  PubMed  Google Scholar 

  • Deblaere R, Bytebier B, De Greve H, Deboeck F, Schell J, Van Montagu M et al (1985) Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucleic Acids Res 13:4777–4788. doi:10.1093/nar/13.13.4777

    Article  PubMed  CAS  Google Scholar 

  • Derrick PM, Barker H, Oparka KJ (1992) Increase in plasmodesmatal permeability during cell-to-cell spread of tobacco rattle virus from individually inoculated cells. Plant Cell 4:1405–1412

    Article  PubMed  Google Scholar 

  • Deyholos MK, Sieburth LE (2000) Separable whorl-specific expression and negative regulation by enhancer element within at AGAMOUS second intron. Plant Cell 12:1799–1810

    Article  PubMed  CAS  Google Scholar 

  • Fu H, Kim SY, Park WD (1995a) High-level tuber expression and sucrose inducibility of a potato Sus4 sucrose synthase gene require 5′ and 3′ flanking sequences and the leader intron. Plant Cell 7:1387–1394

    Article  PubMed  CAS  Google Scholar 

  • Fu H, Kim SY, Park WD (1995b) A potato Sus3 sucrose synthase gene contains a context-dependent 3′ element and a leader intron with both positive and negative tissue-specific effects. Plant Cell 7:1395–1403

    Article  PubMed  CAS  Google Scholar 

  • Gallagher SR (1992) Quantification of GUS activity by fluorometry. In: Gallagher SR (ed) GUS protocols. Academic Press, San Diego

    Google Scholar 

  • Gil P, Green PJ (1996) Multiple regions of the Arabidopsis SAUR-AC1 gene control transcript abundance: the 3′ untranslated region functions as an mRNA instability determinant. EMBO J 15:1678–1686

    PubMed  CAS  Google Scholar 

  • Harms K, Wöhner RV, Schulz B, Frommer WB (1994) Isolation and characterization of P-type H+-ATPase genes from potato. Plant Mol Biol 26:979–988. doi:10.1007/BF00028864

    Article  PubMed  CAS  Google Scholar 

  • Ingelbrecht IL, Herman LM, Dekeyser RA, Van Montagu MC, Depicker AG (1989) Different 3′ end regions strongly influence the level of gene expression in plant cells. Plant Cell 1:671–680

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405. doi:10.1007/BF02667740

    Article  CAS  Google Scholar 

  • Jeong Y-M, Mun J-H, Kim H, Lee S-Y, Kim S-G (2007) An upstream region in the first intron of petunia actin-depolymerizing factor 1 affects tissue specific expression in transgenic Arabidopsis (Arabidopsis thaliana). Plant J 50:230–239. doi:10.1111/j.1365-313X.2007.03053.x

    Article  PubMed  CAS  Google Scholar 

  • Kang Y, Outlaw WH Jr, Andersen PC, Fiore GB (2007) Guard-cell apoplastic sucrose concentration—a link between leaf photosynthesis and stomatal aperture size in the apoplastic phloem loader Vicia faba L. Plant Cell Environ 30:551–558. doi:10.1111/j.1365-3040.2007.01635.x

    Article  PubMed  CAS  Google Scholar 

  • Klinz FJ, Gallwitz D (1985) Size and position of intervening sequences are critical for the splicing efficiency of pre-mRNA in the yeast Saccharomyces cerevisiae. Nucleic Acids Res 13:3791–3804. doi:10.1093/nar/13.11.3791

    Article  PubMed  CAS  Google Scholar 

  • Kühn C, Quick W, Schulz A, Riesmeier J, Sonnewald U, Frommer WB (1996) Companion cell-specific inhibition of the potato sucrose transporter SUT1. Plant Cell Environ 19:1115–1123. doi:10.1111/j.1365-3040.1996.tb00426.x

    Article  Google Scholar 

  • Kühn C, Franceschi VR, Schulz A, Lemoine R, Frommer WB (1997) Macromolecular trafficking indicated by localization and turnover of sucrose transporters in enucleate sieve elements. Science 275:1298–1300. doi:10.1126/science.275.5304.1298

    Article  PubMed  Google Scholar 

  • Kühn C, Hajirezaei M-R, Fernie AR, Roessner-Tunali U, Czechowski T, Hirner B et al (2003) The sucrose transporter StSUT1 localizes to sieve elements in potato tuber phloem and influences tuber physiology and development. Plant Physiol 131:102–113. doi:10.1104/pp.011676

    Article  PubMed  Google Scholar 

  • Lalonde S, Weise A, Walsh RP, Ward JM, Frommer WB (2003) Fusion to GFP blocks intercellular trafficking of the sucrose transporter SUT1 leading to accumulation in companion cells. BMC Plant Biol 3:8. doi:10.1186/1471-2229-3-8

    Article  PubMed  Google Scholar 

  • Lemoine R, Kuhn C, Thiele N, Delrot S, Frommer WB (1996) Antisense inhibition of the sucrose transporter in potato—effects on amount and activity. Plant Cell Environ 19:1124–1131. doi:10.1111/j.1365-3040.1996.tb00427.x

    Article  CAS  Google Scholar 

  • Lepp NW, Peel AJ (1970) Some effects of IAA and kinetin on the movement of sugars in the phloem of willow. Planta 90:230–235. doi:10.1007/BF00387175

    Article  CAS  Google Scholar 

  • Maas C, Laufs J, Grant S, Korfhage C, Werr W (1991) The combination of a novel stimulatory element in the first exon of the maize Shrunken-1 gene with the following intron 1 enhances reporter gene expression up to 1000-fold. Plant Mol Biol 16:199–207. doi:10.1007/BF00020552

    Article  PubMed  CAS  Google Scholar 

  • Reddy AR, Rama Das VS (1986) Stomatal movement and sucrose uptake by guard cell protoplasts of Commelina benghalensis L. Plant Cell Physiol 27:1565–1570

    CAS  Google Scholar 

  • Riesmeier JW, Hirner B, Frommer WB (1993) Potato sucrose transporter expression in minor veins indicates a role in phloem loading. Plant Cell 5:1591–1598

    Article  PubMed  CAS  Google Scholar 

  • Riesmeier JW, Willtmitzer L, Frommer WB (1994) Evidence for an essential role of the sucrose transporter in phloem loading and assimilate partitioning. EMBO J 13:1–7

    PubMed  CAS  Google Scholar 

  • Ritte G, Rosenfeld J, Rohrig K, Raschke K (1999) Rates of sugar uptake by guard cell protoplasts of Pisum sativum L. Related to the solute requirement for stomatal opening. Plant Physiol 121:647–656. doi:10.1104/pp.121.2.647

    Article  PubMed  CAS  Google Scholar 

  • Rosahl S, Schell J, Willmitzer L (1987) Expression of a tuber-specific storage protein in transgenic tobacco plants: demonstration of an esterase activity. EMBO J 6:1155–1159

    PubMed  CAS  Google Scholar 

  • Rose AB, Beliakoff JA (2000) Intron-mediated enhancement of gene expression independent of unique intron sequences and splicing. Plant Physiol 122:535–542. doi:10.1104/pp.122.2.535

    Article  PubMed  CAS  Google Scholar 

  • Rose AB, Last RL (1997) Introns act post-transcriptionally to increase expression of the Arabidopsis thaliana tryptophan pathway gene PAT1. Plant J 11:455–464. doi:10.1046/j.1365-313X.1997.11030455.x

    Article  PubMed  CAS  Google Scholar 

  • Rose AB, Elfersi T, Parra G, Korf I (2008) Promoter-proximal introns in Arabidopsis thaliana are enriched in dispersed signals that elevate gene expression. Plant Cell 20:543–551. doi:10.1105/tpc.107.057190

    Article  PubMed  CAS  Google Scholar 

  • Sieburth LE, Meyerowitz EM (1997) Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. Plant Cell 9:355–365

    Article  PubMed  CAS  Google Scholar 

  • Simpson GG, Filipowicz W (1996) Splicing of precursors to mRNA in higher plants: mechanism, regulation and sub-nuclear organisation of the spliceosomal machinery. Plant Mol Biol 32:1–41. doi:10.1007/BF00039375

    Article  PubMed  CAS  Google Scholar 

  • Sivitz AB, Reinders A, Johnson ME, Krentz AD, Grof CP, Perroux JM et al (2007) Arabidopsis sucrose transporter AtSUC9. High-affinity transport activity, intragenic control of expression, and early flowering mutant phenotype. Plant Physiol 143:188–198. doi:10.1104/pp.106.089003

    Article  PubMed  CAS  Google Scholar 

  • Sivitz AB, Reinders A, Ward JM (2008) Arabidopsis sucrose transporter AtSUC1 in important for pollen germination and sucrose-induced anthocyanin accumulation. Plant Physiol 147:92–100. doi:10.1104/pp.108.118992

    Article  PubMed  CAS  Google Scholar 

  • Talbott LD, Zeiger E (1996) Central roles for potassium and sucrose in guard-cell osmoregulation. Plant Physiol 111:1051–1057

    PubMed  CAS  Google Scholar 

  • Truernit E, Sauer N (1995) The promoter of the Arabidopsis thaliana SUC2 sucrose-H+ symporter gene directs expression of B-glucuronidase to the phloem: Evidence for phloem loading and unloading by SUC2. Planta 196:564–570. doi:10.1007/BF00203657

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weise, A., Lalonde, S., Kühn, C. et al. Introns control expression of sucrose transporter LeSUT1 in trichomes, companion cells and in guard cells. Plant Mol Biol 68, 251–262 (2008). https://doi.org/10.1007/s11103-008-9366-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9366-9

Keywords

Navigation