Skip to main content
Log in

Impact of the loss of AtMSH2 on double-strand break-induced recombination between highly diverged homeologous sequences in Arabidopsis thaliana germinal tissues

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We experimented a novel reporter system to analyze intrachromosomal recombination between homeologous sequences in Arabidopsis germ cell lineages. The recombination substrates used are the BAR and PAT genes which diverge by about 13% at the nucleotide level and confer resistance to the herbicide glufosinate. DNA double-strand breaks (DSBs) were generated by the I-Sce1 endonuclease to induce recombination. Loss of AtMSH2 induces a 3-fold increase of the frequency of recombination events indicating that AtMSH2 is involved in the anti-recombination activity that prevents exchange between highly diverged sequences in Arabidopsis. Molecular analysis of recombined alleles indicates that in wild type plants the single strand annealing (SSA) pathway can process more efficiently homologous 3′ ends than 3′ ends generated by resection of non-homologous overhangs. The loss of AtMSH2 disturbs this process, leading to a modification of the distribution of the BAR/PAT junctions and therefore showing that the MSH2 function is also involved in determining the structure of the recombined alleles. In addition, conversion tracts were observed in some alleles. They are shorter in MSH2 deficient plants than in wild-type, suggesting that a short-patch mismatch repair, not controlled by MSH2, could exist in Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aljabani SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25:4692–4693

    Article  Google Scholar 

  • Bechtold N, Pelletier G (1998) In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol Biol 82:259–266

    PubMed  CAS  Google Scholar 

  • Becker D (1990) Binary vectors which allow the exchange of plant selectable markers and reporter genes. Nucleic Acids Res 18:203

    Article  PubMed  CAS  Google Scholar 

  • Becker D, Kemper E, Schell J, Masterson R (1992) New plant binary vectors with selectable markers located proximal to the left T-DNA border. Plant Mol Biol 20:1195–1197

    Article  PubMed  CAS  Google Scholar 

  • Chen W, Jinks-Robertson S (1999) The role of the mismatch repair machinery in regulating mitotic and meiotic recombination between diverged sequences in yeast. Genetics 151:1299–1313

    PubMed  CAS  Google Scholar 

  • Chiurazzi M, Animesh R, Viret JF, Perea R, Wang XH, Lloyd AM, Signer E (1996) Enhancement of somatic intrachromosomal homologous recombination in Arabidopsis by the HO endonuclease. Plant Cell 8:2057–2066

    Article  PubMed  CAS  Google Scholar 

  • Coïc E, Gluck L, Fabre F (2000) Evidence for short-patch mismatch repair in Saccharomyces cerevisiae. EMBO J 19:3408–3417

    Article  PubMed  Google Scholar 

  • Datta A, Adjiri A, New L, Crouse GF, Jinks-Robertson S (1996) Mitotic crossovers between diverged sequences are regulated by mismatch repair proteins in Saccharomyces cerevisiae. Mol Cell Biol 16:1085–1093

    PubMed  CAS  Google Scholar 

  • Datta A, Hendrix M, Lipsitch M, Jinks-Robertson S (1997) Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast. Proc Natl Acad Sci USA 94:9757–9762

    Article  PubMed  CAS  Google Scholar 

  • Depeiges A, Degroote F, Espagnol MC, Picard G (2006) Translation initiation by non-AUG codons in Arabidopsis thaliana transgenic plants. Plant Cell Rep 25:55–61

    Article  PubMed  CAS  Google Scholar 

  • Dubest S, Gallego ME, White CI (2002) Role of the AtRad1p endonuclease in homologous recombination in plants. EMBO Rep 3:1049–4054

    Article  PubMed  CAS  Google Scholar 

  • Dubest S, Gallego ME, White CI (2004) Roles of the AtErcc1 protein in recombination. Plant J 39:334–342

    Article  PubMed  CAS  Google Scholar 

  • Elliot B, Jasin M (2001) Repair of double-strand breaks by homologous recombination in mismatch repair-defective mammalian cells. Mol Cell Biol 21:2671–2682

    Article  Google Scholar 

  • Emmanuel E, Yehuda E, Melamed-Bessudo C, Avivi-Ragolsky N, Levy A (2006) The role of AtMSH2 in homologous recombination in Arabidopsis thaliana. EMBO Rep 7:100–104

    Article  PubMed  CAS  Google Scholar 

  • Fleck O, Lehmann E, Schar P, Kohli L (1999) Involvement of nucleotide-excision repair in MSH2 PMS1-independent mismatch repair. Nat Genet 21:314–317

    Article  PubMed  CAS  Google Scholar 

  • Goldfarb T, Alani E, (2005) Distinct roles for the Saccharomyces cerevisiae mismatch repair proteins in heteroduplex rejection, mismatch repair and non homologous tail removal. Genetics 169:563–574

    Article  PubMed  CAS  Google Scholar 

  • Gorbunova V, Levy A (1999) How plants make ends meet: DNA double-strands break repair. Trends Plant Sci 4:263–269

    Article  PubMed  Google Scholar 

  • Harfe BD, Jinks-Robertson S (2000) DNA mismatch repair and genetic instability. Annu Rev Genet 34:359–399

    Article  PubMed  CAS  Google Scholar 

  • Hoffman PD, Leonard JM, Lindberg GE, Bollmann SR, Hays JB (2004) Rapid accumulation of mutations during seed-to-seed propagation of mismatch-repair-defective Arabidopsis. Genes Dev. 18:2676–2685

    Article  PubMed  CAS  Google Scholar 

  • Leonard JM, Bollmann SR, Hays JB (2003) Reduction of stability of Arabidopsis genomic and transgenic DNA-repeat sequences (microsatellites) by inactivation of AtMSH2 mismatch-repair function. Plant Physiol 133:328–338

    Article  PubMed  CAS  Google Scholar 

  • Li L, Santerre-Ayotte S, Boivin EB, Jean M, Belzile F (2004) A novel reporter for intrachromosomal homeologous recombination in Arabidopsis thaliana. Plant J 40:1007–1015

    Article  PubMed  CAS  Google Scholar 

  • Li L, Jean M, Belzile F (2006) The impact of sequence divergence and DNA mismatch repair on homeologous recombination in Arabidopsis. Plant J 45:908–916

    Article  PubMed  CAS  Google Scholar 

  • Muheim-Lenz R, Buterin T, Marra G, Naegeli H (2004) Short-patch correction of C-C mismatches in human cells. Nucleic Acids Res 32:6696–6705

    Article  PubMed  CAS  Google Scholar 

  • Modrich P, Lahue R (1996) Mismatch repair in replication fidelity, genetic recombination and cancer biology. Annu Rev Biochem 65:101–133

    Article  PubMed  CAS  Google Scholar 

  • Nicholson A, Hendrix M, Jinks-Robertson S, Crouse GH (2000) Regulation of mitotic homeologous recombination in yeast: Functions of mismatch repair and nucleotide excision repair genes. Genetics 154:133–146

    PubMed  CAS  Google Scholar 

  • Oda S, Humbert O, Fiumicino S, Bignami M, Karran P (2000) Efficient repair of A/C mismatches in mouse cells deficient in long patch mismatch repair. EMBO J 19:1711–1718

    Article  PubMed  CAS  Google Scholar 

  • Opperman R, Emmanuel E, Levy AA (2004) The effect of sequence divergence on recombination between direct repeats in Arabidopsis. Genetics 168:2207–2215

    Article  PubMed  CAS  Google Scholar 

  • Orel N, Kyryk A, Puchta H (2003) Different pathways of homologous recombination are used for the repair of double-stand breaks within tandemly arranged sequences in the plant genome. Plant J 35:604–612

    Article  PubMed  CAS  Google Scholar 

  • Pâques F, Haber JE (1997) Two pathways for removal of nonhomologous DNA ends during double-strand break repair in Saccharomyces cerevisiae. Mol Cell Biol 17:6765–6771

    PubMed  Google Scholar 

  • Puchta H (1998) Repair of genomic double-strand breaks in somatic plant cells by one-sided invasion of homologous sequences. Plant J 13:331–339

    Article  CAS  Google Scholar 

  • Puchta H (2005) The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J Exp Bot 56:1–14

    Article  PubMed  CAS  Google Scholar 

  • Puchta H, Dujon B, Hohn B (1993) Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res 21:5034–5040

    Article  PubMed  CAS  Google Scholar 

  • Puchta H, Dujon B, Hohn B (1996) Two different but related mechanisms are used in plants for the repair of double-strand breaks by homologous recombination. Genetics 93:5055–5060

    CAS  Google Scholar 

  • Ray A, Langer M (2002) Homologous recombination: ends as the means. Trends Plant Sci 7:435–440

    Article  PubMed  CAS  Google Scholar 

  • Rayssiguier C, Thaler DS, Radman M (1989) The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature 342:396–401

    Article  PubMed  CAS  Google Scholar 

  • Schoffield MJ, Hsieh P (2003) DNA mismatch repair: molecular mechanisms and biological function. Annu Rev Microbiol 57:579–608

    Article  CAS  Google Scholar 

  • Siebert R, Puchta H (2002) Efficient repair of genomic double-strand breaks by homologous recombination between directly repeated sequences in the plant genome. Plant Cell 14:1121–1131

    Article  PubMed  CAS  Google Scholar 

  • Stambuk S, Radman M (1998) Mechanism and control of interspecies recombination in Escherichia coli. I. Mismatch repair, methylation, recombination and replication functions. Genetics 150:533–542

    PubMed  CAS  Google Scholar 

  • Sugawara N, Pâques F, Colaiacovo M, Haber J (1997) Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination. Proc Natl Acad Sci USA 94:9214–9219

    Article  PubMed  CAS  Google Scholar 

  • Sugawara N, Goldfarb T, Studamire B, Alani E, Haber J (2004) Heteroduplex rejection during single-strand annealing requires Sgs1 helicase and mismatch repair proteins Msh2 and Msh6 but not Pms1. Proc Natl Acad Sci USA 101:9315–9320

    Article  PubMed  CAS  Google Scholar 

  • Thierry A, Fairhead C, Dujon B (1990) The complete sequence of the 8.2 kb segment left of MAT on chromosome III reveals five ORFs, including a gene for yeast ribokinase. Yeast 6:521–534

    Article  PubMed  CAS  Google Scholar 

  • Trouiller B, Schaefer DG, Charlot F, Nogué F (2006) MSH2 is essential for the preservation of genome integrity and prevents homeologous recombination in the moss physcomitella patens. Nucleic Acids Res 34:232–242

    Article  PubMed  CAS  Google Scholar 

  • White J, Chang SHP, Bibb MJ, Bibb MJ (1990) A cassette containing the bar gene of Streptomyces hygroscopicus: a selectable marker for plant transformation. Nucleic Acids Res 18:1062

    Article  PubMed  CAS  Google Scholar 

  • Westmoreland J, Porter G, Radman M, Resnick MA (1997) Highly mismatched molecules resembling recombination intermediates efficiently transform mismatch repair proficient Escherichia coli. Genetics 145:29–38

    PubMed  CAS  Google Scholar 

  • Wohlleben W, Arnold W, Broer I, Hilleman D, Strauch E, Pühler A (1988) Nucleotide sequence of the phosphinithricin N-acetyltransferase gene from Streptomyces viridochromogenes Tü494 and its expression in Nicotiana tabacum. Gene 70:25–37

    Article  PubMed  CAS  Google Scholar 

  • Zahrt TC, Maloy S (1997) Barriers to recombination between closely related bacteria: MutS and RecBCD inhibit recombination between Salmonella typhimurium and Salmonella typhi. Proc Natl Acad Sci USA 94:9786–9791

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Charles White for critical reading of the manuscript, Dr. Bernard Dujon and Dr. Pascual Perez (Biogemma) for kindly providing plasmids pBios-1K and pSCM525. This work was supported by the Centre National de la Recherche Scientifique (CNRS) and by the Université Blaise-Pascal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georges Picard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lafleuriel, J., Degroote, F., Depeiges, A. et al. Impact of the loss of AtMSH2 on double-strand break-induced recombination between highly diverged homeologous sequences in Arabidopsis thaliana germinal tissues. Plant Mol Biol 63, 833–846 (2007). https://doi.org/10.1007/s11103-006-9128-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-006-9128-5

Keywords

Navigation