Skip to main content
Log in

Distinct roles for the 5′ and 3′ untranslated regions in the degradation and accumulation of chloroplast tufA mRNA: identification of an early intermediate in the in vivo degradation pathway

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Elongation factor Tu in Chlamydomonas reinhardtii is a chloroplast-encoded gene (tufA) whose 1.7-kb mRNA has a relatively short half-life. In the presence of chloramphenicol (CAP), which freezes translating chloroplast ribosomes, a 1.5-kb tufA RNA becomes prominent. Rifampicin-chase analysis indicates that the 1.5-kb RNA is a degradation intermediate, and mapping studies show that it is missing 176–180 nucleotides from the 5′ end of tufA. The 5′ terminus of the intermediate maps to a section of the untranslated region (UTR) predicted to be highly structured and to encode a small ORF. The intermediate could be detected in older cultures in the absence of CAP, indicating that it is not an artifact of drug treatment. Also, it did not overaccumulate in the chloroplast ribosome-deficient mutant, ac20 cr1, indicating its stabilization is specific to elongation-arrested ribosomes. To determine if the 5′ UTR of tufA is destabilizing, the corresponding region of the atpA-aadA-rbcL gene was replaced with the tufA sequence, and introduced into the chloroplast genome; the 3′ UTR was also substituted for comparison. Analysis of these transformants showed that the transcripts containing the tufA 3′-UTR accumulate to significantly lower levels. Data from constructs based on the vital reporter, Renilla luciferase, confirmed the importance of the tufA 3′-UTR in determining RNA levels, and suggested that the 5′ UTR of tufA affects translation efficiency. These data indicate that the in vivo degradation of tufA mRNA begins in the 5′ UTR, and is promoted by translation. The data also suggest, however, that the level of the mature RNA is determined more by the 3′ UTR than the 5′ UTR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

aadA :

Aminoglycoside adenine transferase

atpA :

Alpha subunit of ATP synthetase

CAP:

Chloramphenicol

IR:

Inverted repeat

rbcL :

Ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit

oligo:

Oligodeoxynucleotide

rluc :

Renilla luciferase

RIF:

Rifampicin

tufA :

Elongation factor Tu

UTR:

Untranslated region

uORF:

Upstream ORF

References

  • Baldauf SL, Palmer JD (1990) Evolutionary transfer of the chloroplast tufA gene to the nucleus. Nature 344:262–265

    Article  PubMed  CAS  Google Scholar 

  • Barnes D, Franklin S, Schultz J, Henry R, Brown E, Coragliotti A, Mayfield SP (2005) Contribution of 5′- and 3′-untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes. Mol Genet Genomics 274:625–636

    Article  PubMed  CAS  Google Scholar 

  • Blowers AD, Klein U, Ellmore GS, Bogorad L (1993) Functional in vivo analyses of the 3′ flanking sequences of the Chlamydomonas chloroplast rbcL and psaB genes. Mol Gen Genet 238:339–349

    Article  PubMed  CAS  Google Scholar 

  • Bollenbach TJ, Schuster G, Stern DB (2004) Cooperation of endo- and exoribonucleases in chloroplast mRNA turnover. Prog Nucleic Acids Res Mol Biol 78:305–337

    CAS  Google Scholar 

  • Bonny C, Stutz E (1993) Soybean (Glycine max L.) nuclear DNA contains four tufA genes coding for the chloroplast-specific translation elongation factor EF-Tu. Chimia 47:247–249

    CAS  Google Scholar 

  • Boudreau E, Nickelsen J, Lemaire SD, Ossenbuhl F, Rochaix J-D (2000) The Nac2 gene of Chlamydomonas encodes a chloroplast TPR-like protein involved in psbD mRNA stability. EMBO J 19:3366–3376

    Article  PubMed  CAS  Google Scholar 

  • Boynton JE, Gillham NW (1993) Chloroplast transformation in Chlamydomonas. Meth Enzymol 217:510–536

    PubMed  CAS  Google Scholar 

  • Breidenbach E, Leu S, Michaels A, Boschetti A (1990) Synthesis of EF-Tu amd distribution of its mRNA between stroma and thylakoids during the cell cycle of Chlamydomonas reinhardtii. Biochim Biophys Acta 1048:209–216

    PubMed  CAS  Google Scholar 

  • Danon A, Mayfield SPY (1991) Light regulated translational activators: identification of chloroplast gene specific mRNA binding proteins. EMBO J 10:3993–4001

    PubMed  CAS  Google Scholar 

  • Drager RG, Girard-Bascou J, Choquet Y, Kindle K, Stern DB (1998) In vivo evidence for 5′−3′ exoribonuclease degradation of an unstable chloroplast mRNA. Plant J 13:85–96

    Article  PubMed  CAS  Google Scholar 

  • Drager RG, Higgs DC, Kindle KL, Stern DB (1999) 5′ to 3′ exoribonucleolytic activity is a normal component of chloroplast mRNA decay pathways. Plant J 19:521–531

    Article  PubMed  CAS  Google Scholar 

  • Drapier D, Girard-Bascou J, Stern DB, Wollman FA (2002) A dominant nuclear mutation in Chlamydomonas identifies a factor controlling chloroplast mRNA stability by acting on the coding region of the atpA transcript. Plant J 31:687–697

    Article  PubMed  CAS  Google Scholar 

  • Eberhard S, Drapier D, Wollman FA (2002) Searching limiting steps in the expression of chloroplast-encoded proteins: relations between gene copy number, transcription, transcript abundance and translation rate in the chloroplast of Chlamydomonas reinhardtii. Plant J 31:149–160

    Article  PubMed  CAS  Google Scholar 

  • Eibl C, Zou Z, Beck A, Kim M, Mullet J, Koop HU (1999) In vivo analysis of plastid psbA, rbcL and rpl32 UTR elements by chloroplast transformation: tobacco plastid gene expression is controlled by modulation of transcript levels and translation efficiency. Plant J 19:333–345

    Article  PubMed  CAS  Google Scholar 

  • Fargo D, Hu E, Boynton JE, Gillham NW (2000) Mutations that alter the higher-order structure of its 5′ untranslated region affect the stability of chloroplast rps7 mRNA. Mol Gen Genet 264:291–299

    Article  PubMed  CAS  Google Scholar 

  • Gallie DR (1998) A tale of two termini: a functional interaction between the termini of an mRNA is a prerequisite for efficient translation initiation. Gene 216:1–11

    Article  PubMed  CAS  Google Scholar 

  • Goldschmidt-Clermont M (1991) Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker for site-directed transformation of Chlamydomonas. Nucleic Acids Res 19:4083–4089

    Article  PubMed  CAS  Google Scholar 

  • Goldschmidt-Clermont M (1998) Coordination of nuclear and chloroplast gene expression in plant cells. Int Rev Cytol 177:115–180

    Article  PubMed  CAS  Google Scholar 

  • Grunberg-Manago M (1999) Messenger RNA stability and its role in control of gene expression in bacteria and phages. Annu Rev Genet 33:193–227

    Article  PubMed  CAS  Google Scholar 

  • Harris EH (1989) The Chlamydomonas sourcebook: a comprehensive guide to biology and laboratory use. Academic, San Diego

    Google Scholar 

  • Harris EH, Boynton JE, Gillham NW (1974) Chloroplast ribosome biogenesis in Chlamydomonas: selection and characterization of mutants blocked in ribosome formation. J Cell Biol 63:160–179

    Article  PubMed  CAS  Google Scholar 

  • Hauser CR, Gillham NW, Boynton JE (1996) Translational regulation of chloroplast genes. Proteins binding to the 5′-untranslated regions of chloroplast mRNAs in Chlamydomonas reinhardtii. J Biol Chem 271:1486–1497

    Article  PubMed  CAS  Google Scholar 

  • Herrin DL, Schmidt GW (1987) Chloroplast gene expression in chloroplast ribosome-deficient mutants of Chlamydomonas reinhardtii. In: Biggins J (ed) Progress in photosynthesis research. Martinus Nijhoff, Dordrecht, The Netherlands, pp 645–648

    Google Scholar 

  • Herrin DL, Schmidt GW (1988) Rapid, reversible staining of northern blots prior to hybridization. Biotechniques 6:196–200

    PubMed  CAS  Google Scholar 

  • Hicks A, Drager RG, Higgs DC, Stern DB (2002) An mRNA 3′ processing site targets downstream sequences for rapid degradation in Chlamydomonas chloroplasts. J Biol Chem 277:3325–3333

    Article  PubMed  CAS  Google Scholar 

  • Higgs DC, Shapiro RS, Kindle KL, Stern DB (1999) Small cis-acting sequences that specify secondary structures in a chloroplast mRNA are essential for RNA stability and translation. Mol Cell Biol 19:8479–8491

    PubMed  CAS  Google Scholar 

  • Holland PM, Abramson RD, Watson R, Gelfand DH N1991) Detection of specific polymerase chain reaction product by utilizing the 5′ to 3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci USA 88:7276–7280

    Article  PubMed  CAS  Google Scholar 

  • Holloway SP, Herrin DL (1998) Processing of a composite large subunit rRNA: studies with Chlamydomonas mutants deficient in maturation of the 23S-like rRNA. Plant Cell 10:1193–1206

    Article  PubMed  CAS  Google Scholar 

  • Hwang S, Kawazoe R, Herrin DL (1996) Transcription of tufA and other chloroplast-encoded genes is controlled by a circadian clock in Chlamydomonas. Proc Natl Acad Sci USA 93:996–1000

    Article  PubMed  CAS  Google Scholar 

  • Jiao HS, Hicks A, Simpson C, Stern DB (2004) Short dispersed repeats in the Chlamydomonas chloroplast genome are collocated with sites for mRNA 3′ end formation. Curr Genet 45:311–322

    Article  PubMed  CAS  Google Scholar 

  • Katz YS, Danon A (2002) The 3′-untranslated region of chloroplast psbA mRNA stabilizes binding of regulatory proteins to the leader of the message. J Biol Chem 277:18665–18669

    Article  PubMed  CAS  Google Scholar 

  • Kawazoe R, Hwang S, Herrin DL (2000) Requirement for cytoplasmic protein synthesis during circadian peaks of transcription of chloroplast-encoded genes in Chlamydomonas. Plant Mol Biol 44:699–709

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Klein PG, Mullet JE (1991) Ribosomes pause at specific sites during synthesis of membrane-bound chloroplast reaction center protein D1. J Biol Chem 266:14931–14938

    PubMed  CAS  Google Scholar 

  • Kishine M, Takabayashi A, Munekage Y, Shikanai T, Endo T, Sato F (2004) Ribosomal RNA processing and an RNase R family member in chloroplasts of Arabidopsis. Plant Mol Biol 55:595–606

    Article  PubMed  CAS  Google Scholar 

  • Koo JS, Spremulli LL (1994) Analysis of the translational initiation region on the Euglena gracilis chloroplast ribulose-bisphosphate carboxylase/oxygenase (rbcL) messenger RNA. J Biol Chem 269:7494–7500

    PubMed  CAS  Google Scholar 

  • Kramzar LM, Mueller T, Erickson B, Higgs DC (2006) Regulatory sequences of orthologous petD chloroplast mRNAs are highly specific among Chlamydomonas species. Plant Mol Biol 60:405–422

    Article  PubMed  CAS  Google Scholar 

  • Kudla J, Hayes R, Gruissem W (1996) Polyadenylation accelerates degradation of chloroplast mRNA. EMBO J 15:7137–7146

    PubMed  CAS  Google Scholar 

  • Lee J, Herrin DL (2002) Assessing the relative importance of light and the circadian clock in controlling chloroplast translation in Chlamydomonas reinhardtii. Photosynth Res 72:295–306

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Bingham SE, Webber AN (1996) Function of 3′ non-coding sequences and stop codon usage in expression of the chloroplast psaB gene in Chlamydomonas reinhardtii. Plant Mol Biol 31:337–354

    Article  PubMed  CAS  Google Scholar 

  • Leu S, White D, Michaels A (1990) Cell cycle-dependent transcriptional and post-transcriptional regulation of chloroplast gene expression in Chlamydomonas reinhardtii. Biochim Biophys Acta 1049:311–317

    PubMed  CAS  Google Scholar 

  • Lilly JW, Maul JE, Stern DB (2002) The Chlamydomonas reinhardtii organellar genomes respond transcriptionally and post-transcriptionally to abiotic stimuli. Plant Cell 14:2681–2706

    Article  PubMed  CAS  Google Scholar 

  • Lisitsky I, Klaff P, Schuster G (1996) Addition of destabilizing poly(A)-rich sequences to endonuclease cleavage sites during the degradation of chloroplast mRNA. Proc Natl Acad Sci USA 93:13398–13403

    Article  PubMed  CAS  Google Scholar 

  • Margulies MM, Michaels A (1974) Ribosomes bound to chloroplast membranes in Chlamydomonas reinhardtii. J Cell Biol 60:65–77

    Article  PubMed  CAS  Google Scholar 

  • Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940

    Article  PubMed  CAS  Google Scholar 

  • Maul JE, Lilly JW, Cui L, de Pamphilis CW, Miller W, Harris EH, Stern DB (2002) The Chlamydomonas reinhardtii plastid chromosome: islands of genes in a sea of repeats. Plant Cell 14:2659–2679

    Article  PubMed  CAS  Google Scholar 

  • Minko I, Holloway SP, Nikaido S, Carter M, Odom OW, Johnson CH, Herrin DL (1999) Renilla luciferase as a vital reporter for chloroplast gene expression in Chlamydomonas. Mol Gen Genet 262:421–425

    Article  PubMed  CAS  Google Scholar 

  • Monde R-A, Greene JC, Stern DB (2000) The sequence and secondary structure of the 3′-UTR affect 3′-end maturation, RNA accumulation, and translation in tobacco chloroplasts. Plant Mol Biol 44:529–542

    Article  PubMed  CAS  Google Scholar 

  • Murayama Y, Matsubayashi T, Sugita M, Sugiura M (1993) Purification of chloroplast elongation factor Tu and cDNA analysis in tobacco: the existence of two chloroplast elongation factor Tu species. Plant Mol Biol 22:767–774

    Article  PubMed  CAS  Google Scholar 

  • Nickelsen J (2003) Chloroplast RNA-binding proteins. Curr Genet 43:392–399

    Article  PubMed  CAS  Google Scholar 

  • Nickelsen J, Link G (1993) The 54 kDa RNA-binding protein from mustard chloroplasts mediates endonucleolytic transcript 3′ end formation in vitro. Plant J 3:537–544

    Article  PubMed  CAS  Google Scholar 

  • Nickelsen J, van Dillewijn J, Rahire M, Rochaix J-D (1994) Determinants for stability of the chloroplast psbD RNA are located within its short leader region in Chlamydomonas reinhardtii. EMBO J 13:3182–3191

    PubMed  CAS  Google Scholar 

  • Nickelsen J, Fleischmann M, Boudreau E, Rahire M, Rochaix J-D (1999) Identification of cis-acting RNA leader elements required for chloroplast psbD gene expression in Chlamydomonas. Plant Cell 11:957–970

    Article  PubMed  CAS  Google Scholar 

  • Parker R, Song H (2004) The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol 11:121–127

    Article  PubMed  CAS  Google Scholar 

  • Rao D, Momcilovic I, Kobayashi S, Callegari E, Ristic Z (2004) Chaperone activity of recombinant maize chloroplast protein synthesis elongation factor, EF-Tu. Eur J Biochem 271:3684–3692

    Article  PubMed  CAS  Google Scholar 

  • Rott R, Levy H, Drager RG, Stern DB, Schuster G (1998a) 3′-Processed mRNA is preferentially translated in Chlamydomonas reinhardtii chloroplasts. Mol Cell Biol 18:4605–4611

    CAS  Google Scholar 

  • Rott R, Liveanu V, Drager RG, Stern DB, Schuster G (1998b) The sequence and structure of the 3′-untranslated regions of chloroplast transcripts are important determinants of mRNA accumulation and stability. Plant Mol Biol 36:307–314

    Article  CAS  Google Scholar 

  • Sakamoto W, Sturm NR, Kindle KL, Stern DB (1994) petD mRNA maturation in Chlamydomonas reinhardtii chloroplasts: role of 5′ endonucleolytic processing. Mol Cell Biol 14:6180–6186

    PubMed  CAS  Google Scholar 

  • Salvador ML, Klein U, Bogorad L (1993a) 5′ sequences are important positive and negative determinants of the longevity of Chlamydomonas chloroplast gene transcripts. Proc Natl Acad Sci USA 90:1556–1560

    Article  CAS  Google Scholar 

  • Salvador ML, Klein U, Bogorad L (1993b) Light-regulated and endogenous fluctuations of chloroplast transcript levels in Chlamydomonas. Regulation by transcription and RNA degradation. Plant J 3:213–219

    Article  CAS  Google Scholar 

  • Silk GW, Wu M (1988) Darkness and antibiotics increase the steady-state transcripts of the elongation factor gene (tufA) in Chlamydomonas reinhardtii. Curr Genet 14:119–126

    Article  PubMed  CAS  Google Scholar 

  • Silk GW, Wu M (1993) Post-transcriptional accumulation of chloroplast tufA (elongation factor gene) mRNA during chloroplast development in Chlamydomonas reinhardtii. Plant Mol Biol 33:87–96

    Article  Google Scholar 

  • Steitz J (1969) Polypeptide chain initiation: nucleotide sequences of the three ribosomal binding sites in bacteriophage R17 RNA. Nature 224:957–964

    Article  PubMed  CAS  Google Scholar 

  • Stern DB, Radwanski ER, Kindle K (1991) A 3′ stem/loop structure of the Chlamydomonas chloroplast atpB gene regulates mRNA accumulation in vivo. Plant Cell 3:285–297

    Article  PubMed  CAS  Google Scholar 

  • Stollar NE, Kim JK, Hollingsworth MJ (1994) Ribosomes pause during the expression of the large ATP synthase gene cluster in spinach chloroplasts. Plant Physiol 105:1167–1177

    Article  PubMed  CAS  Google Scholar 

  • Suay L, Salvador M, Abesha E, Klein U (2005) Specific roles of 5′ secondary structures in stabilizing transcripts in chloroplasts. Nucleic Acids Res 33:4754–4761

    Article  PubMed  CAS  Google Scholar 

  • Vaistij FE, Boudreau E, Lemaire SD, Goldschmidt-Clermont M, Rochaix J-D (2000a) Characterization of Mbb1, a nucleus-encoded tetratricopeptide-like repeat protein required for expression of the chloroplast psbB/psbT/psbH gene cluster in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 97:14813–14818

    Article  CAS  Google Scholar 

  • Vaistij FE, Goldschmidt-Clermont M, Wostrikoff K, Rochaix J-D (2000b) Stability determinants in the chloroplast psbB/T/H mRNAs of Chlamydomonas reinhardtii. Plant J 21:469–482

    Article  CAS  Google Scholar 

  • Wolin SL, Walter P (1988) Ribosome pausing and stacking during translation of a eukaryotic mRNA. EMBO J 7:3559–3569

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank O.W. Odom for expert advice, and Greg Silk, Irina Minko, and Michel Goldschmidt-Clermont for clones and/or strains. This research was supported by grants from the Department of Energy (DE-FG03-02ER15352) and the Welch Foundation (F−1164) to DLH. AAZ received a graduate fellowship from the Section of Molecular Cell and Developmental Biology, and CSK was an undergraduate research fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Herrin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zicker, A.A., Kadakia, C.S. & Herrin, D.L. Distinct roles for the 5′ and 3′ untranslated regions in the degradation and accumulation of chloroplast tufA mRNA: identification of an early intermediate in the in vivo degradation pathway. Plant Mol Biol 63, 689–702 (2007). https://doi.org/10.1007/s11103-006-9117-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-006-9117-8

Keywords

Navigation