Skip to main content
Log in

Short dispersed repeats in the Chlamydomonas chloroplast genome are collocated with sites for mRNA 3′ end formation

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The Chlamydomonas reinhardtii chloroplast genome possesses thousands of small dispersed repeats (SDRs), which are of unknown function. Here, we used the petA gene as a model to investigate the role of SDRs in mRNA 3′ end formation. In wild-type cells, petA mRNA accumulated as a major 1.3-kb transcript, whose 3′ end was mapped to the distal end of a predicted stem-loop structure. To determine whether this stem-loop was required for petA mRNA stability, a series of deletions was constructed. These deletion strains accumulated a variety of petA mRNAs, for which approximate 3′ ends were deduced. These 3′ ends were found to flank stem-loop structures, many of which were formed partially or completely from inverted copies of SDRs. All strains accumulated wild-type levels of cytochrome f, demonstrating that alternative 3′ termini are compatible with efficient translation. The ability to form alternative mRNA termini using SDRs lends additional flexibility to the chloroplast gene expression apparatus and thus could confer an evolutionary advantage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B
Fig. 2A, B
Fig. 3A, B
Fig. 4
Fig. 5A, B

Similar content being viewed by others

References

  • Blowers AD, Klein U, Ellmore GS, Bogorad L (1993) Functional in vivo analyses of the 3′ flanking sequences of the Chlamydomonas chloroplast rbcL and psaB genes. Mol Gen Genet 238:339–349

    CAS  PubMed  Google Scholar 

  • Bollenbach TJ, Stern DB (2003) Secondary structures common to chloroplast mRNA 3′-untranslated regions direct cleavage by CSP41, an endoribonuclease belonging to the short chain dehydrogenase/reductase superfamily. J Biol Chem 278:25832–25838

    Article  CAS  PubMed  Google Scholar 

  • Bollenbach T, Tatman D, Stern D (2003) CSP41, a mutltifunctional RNA-binding protein, initiates mRNA turnover in tobacco chloroplasts. Plant J 36:842–852

    Article  PubMed  Google Scholar 

  • Boynton JE, Gillham NW, Newman SM, Harris EH (1992) Organelle genetics and transformation in Chlamydomonas. In: Hohn T (ed) Cell organelles. Springer, Berlin Heidelberg New York, pp 364–389

  • Büschlen S, Choquet Y, Kuras R, Wollman F-A (1991) Nucleotide sequences of the continuous and separated petA, petB, and petD chloroplast genes in Chlamydomonas reinhardtii. FEBS Lett 284:257–262

    Article  PubMed  Google Scholar 

  • Chen Q, Adams CC, Usack L, Yang J, Monde R, Stern DB (1995) An AU-rich element in the 3′ untranslated region of the spinach chloroplast petD gene participates in sequence-specific RNA–protein complex formation. Mol Cell Biol 15:2010–2018

    CAS  PubMed  Google Scholar 

  • Chen X, Kindle K, Stern D (1993) Initiation codon mutations in the Chlamydomonas chloroplast petD gene result in temperature-sensitive photosynthetic growth. EMBO J 12:3627–3635

    CAS  PubMed  Google Scholar 

  • Chen X, Simpson CL, Kindle KL, Stern DB (1997) A dominant mutation in the Chlamydomonas reinhardtii nuclear gene SIM30 suppresses translational defects caused by initiation codon mutations in chloroplast genes. Genetics 145:935–943

    CAS  PubMed  Google Scholar 

  • Choquet Y, Zito F, Wostrikoff K, Wollman FA (2003) Cytochrome f translation in Chlamydomonas chloroplast is autoregulated by its carboxyl-terminal domain. Plant Cell 15:1443–1454

    Article  CAS  PubMed  Google Scholar 

  • Cosner ME, Jansen RK, Palmer JD, Downie SR (1997) The highly rearranged chloroplast genome of Trachelium caeruleum (Campanulaceae): multiple inversions, inverted repeat expansion and contraction, transposition, insertions/deletions, and several repeat families. Curr Genet 31:419–429

    Article  CAS  PubMed  Google Scholar 

  • Cui X, Hsia AP, Liu F, Ashlock DA, Wise RP, Schnable PS (2003) Alternative transcription initiation sites and polyadenylation sites are recruited during Mu suppression at the rf2a locus of maize. Genetics 163:685–698

    CAS  PubMed  Google Scholar 

  • Drager RG, Zeidler M, Simpson CL, Stern DB (1996) A chloroplast transcript lacking the 3′ inverted repeat is degraded by 3′→5′ exoribonuclease activity. RNA 2:652–663

    CAS  PubMed  Google Scholar 

  • Drager RG, Girard-Bascou J, Choquet Y, Kindle KL, Stern DB (1998) In vivo evidence for 5′→3′ exoribonuclease degradation of an unstable chloroplast mRNA. Plant J 13:85–96

    Article  CAS  PubMed  Google Scholar 

  • Eibl C, Zou Z, Beck A, Minkyun K, Mullet J, Koop H-U (1999) In vivo analysis of plastid psbA, rbcL and rpl32 UTR elements by chloroplast transformation: tobacco plastid gene expression is controlled by modulation of transcript levels and translation efficiency. Plant J 19:333–345

    Article  CAS  PubMed  Google Scholar 

  • Felder S, et al (2001) The nucleus-encoded HCF107 gene of Arabidopsis provides a link between intercistronic RNA processing and the accumulation of translation-competent psbH transcripts in chloroplasts. Plant Cell 13:2127–2141

    Article  CAS  PubMed  Google Scholar 

  • Harris EH (1989) The Chlamydomonas sourcebook: a comprehensive guide to biology and laboratory use. Academic Press, San Diego

    Google Scholar 

  • Hayes R, Kudla J, Schuster G, Gabay L, Maliga P, Gruissem W (1996) Chloroplast mRNA 3′-end processing by a high molecular weight protein complex is regulated by nuclear encoded RNA binding proteins. EMBO J 15:1132–1141

    CAS  PubMed  Google Scholar 

  • Higgs DC, Shapiro RS, Kindle KL, Stern DB (1999) Small cis-acting sequences that specify secondary structures in a chloroplast mRNA are essential for RNA stability and translation. Mol Cell Biol 19:8479–8491

    CAS  PubMed  Google Scholar 

  • Kuras R, Wollman F-A (1994) The assembly of cytochrome b 6 /f complexes: an approach using genetic transformation of the green alga Chlamydomonas reinhardtii. EMBO J 13:1019–1027

    CAS  PubMed  Google Scholar 

  • Lee H, Bingham SE, Webber AN (1996) Function of 3′ non-coding sequences and stop codon usage in expression of the chloroplast psaB gene in Chlamydomonas reinhardtii. Plant Mol Biol 31:337–354

    CAS  PubMed  Google Scholar 

  • Legendre M, Gautheret D (2003) Sequence determinants in human polyadenylation site selection. BMC Genomics 4:7

    Article  PubMed  Google Scholar 

  • Levy H, Kindle KL, Stern DB (1997) A nuclear mutation that affects the 3′ processing of several mRNAs in Chlamydomonas chloroplasts. Plant Cell 9:825–836

    Article  CAS  PubMed  Google Scholar 

  • Maniatis T, Fritsch EM, Sambroook J (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Matsumoto T, Matsuo M, Matsuda Y (1991) Structural analysis and expression during dark–light transitions of a gene for cytochrome f in Chlamydomonas reinhardtii. Plant Cell Physiol 32:863–872

    CAS  Google Scholar 

  • Maul JE, et al (2002) The Chlamydomonas reinhardtii plastid chromosome: islands of genes in a sea of repeats. Plant Cell 14:2659–2679

    Article  CAS  PubMed  Google Scholar 

  • Memon AR, Meng B, Mullet JE (1996) RNA-binding proteins of 37/38 kDa bind specifically to the barley chloroplast psbA 3′-end untranslated RNA. Plant Mol Biol 30:1195–1205

    CAS  PubMed  Google Scholar 

  • Monde RA, Greene JC, Stern DB (2000a) The sequence and secondary structure of the 3′-UTR affect 3′-end maturation, RNA accumulation, and translation in tobacco chloroplasts. Plant Mol Biol 44:529–542

    CAS  Google Scholar 

  • Monde RA, Schuster G, Stern DB (2000b) Processing and degradation of chloroplast mRNA. Biochimie 82:573–582

    CAS  Google Scholar 

  • Morton BR, Clegg MT (1993) A chloroplast DNA mutational hotspot and gene conversion in a noncoding region near rbcL in the grass family (Poaceae). Curr Genet 24:357–365

    CAS  PubMed  Google Scholar 

  • Newman SM, Harris EH, Johnson AM, Boynton JE, Gillham NW (1992) Nonrandom distribution of chloroplast recombination events in Chlamydomonas reinhardtii: evidence for a hotspot and an adjacent cold region. Genetics 132:413–429

    CAS  PubMed  Google Scholar 

  • Palmer JD (1991) Plastid chromosomes: structure and evolution. In: Vasil IK (ed) The molecular biology of plastids. Academic Press, San Diego

  • Palmer JD, Boynton JE, Gillham NW, Harris EH (1985) Evolution and recombination of the large inverted repeat in Chlamydomonas chloroplast DNA. In: Arntzen C, Bogorad L, Bonitz S, Steinback K (eds) Molecular biology of the photosynthetic apparatus. Cold Spring Harbor Press, Cold Spring Harbor, N.Y., pp 269–278

  • Rott R, Drager RG, Stern DB, Schuster G (1996) The 3′ untranslated regions of chloroplast genes in Chlamydomonas reinhardtii do not serve as efficient transcriptional terminators. Mol Gen Genet 252:676–683

    PubMed  Google Scholar 

  • Rott R, Levy H, Drager RG, Stern DB, Schuster G (1998a) 3′-processed mRNA is preferentially translated in Chlamydomonas reinhardtii chloroplasts. Mol Cell Biol 18:4605–4611

    CAS  PubMed  Google Scholar 

  • Rott R, Liveanu V, Drager RG, Stern DB, Schuster G (1998b) The sequence and structure of the 3′-untranslated regions of chloroplast transcripts are important determinants of mRNA accumulation and stability. Plant Mol Biol 36:307–314

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto W, Kindle KL, Stern DB (1993) In vivo analysis of Chlamydomonas chloroplast petD gene expression using stable transformation of β-glucuronidase translational fusions. Proc Natl Acad Sci USA 90:497–501

    CAS  PubMed  Google Scholar 

  • Sakamoto W, Sturm NR, Kindle KL, Stern DB (1994) petD mRNA maturation in Chlamydomonas reinhardtii chloroplasts: The role of 5′ endonucleolytic processing. Mol Cell Biol 14:6180–6186

    CAS  PubMed  Google Scholar 

  • Schuster G, Gruissem W (1991) Chloroplast mRNA 3′ end processing requires a nuclear-encoded RNA-binding protein. EMBO J 10:1493–1502

    CAS  PubMed  Google Scholar 

  • Schwartz S et al. (2000) PipMaker—a web server for aligning two genomic DNA sequences. Genome Res 10:577–586

    CAS  PubMed  Google Scholar 

  • Shepherd HS, Boynton JE, Gillham NW (1979) Mutations in nine chloroplast loci of Chlamydomonas affecting photosynthetic functions. Proc Natl Acad Sci USA 76:1353–1357

    CAS  PubMed  Google Scholar 

  • Staub JM, Maliga P (1994) Translation of psbA mRNA is regulated by light via the 5′-untranslated region in tobacco plastids. Plant J 6:547–553

    Article  CAS  PubMed  Google Scholar 

  • Stern DB, Gruissem W (1987) Control of plastid gene expression: 3′ inverted repeats act as mRNA processing and stabilizing elements, but do not terminate transcription. Cell 51:1145–1157

    CAS  PubMed  Google Scholar 

  • Stern DB, Kindle KL (1993) 3′ end maturation of the Chlamydomonas reinhardtii chloroplast atpB mRNA is a two-step process. Mol Cell Biol 13:2277–2285

    CAS  PubMed  Google Scholar 

  • Stern DB, Radwanski ER, Kindle KL (1991) A 3′ stem/loop structure of the Chlamydomonas chloroplast atpB gene regulates mRNA accumulation in vivo. Plant Cell 3:285–297

    Google Scholar 

  • Sturm N, et al (1994) The petD gene is transcribed by functionally redundant promoters in Chlamydomonas reinhardtii chloroplasts. Mol Cell Biol 14:6171–6179

    CAS  PubMed  Google Scholar 

  • Thompson RJ, Mosig G (1987) Stimulation of a Chlamydomonas chloroplast promoter by novobiocin in situ and in E. coli implies regulation by torsional stress in the chloroplast DNA. Cell 48:281–287

    CAS  PubMed  Google Scholar 

  • Walter M, Kilian J, Kudla J (2002) PNPase activity determines the efficiency of mRNA 3′-end processing, the degradation of tRNA and the extent of polyadenylation in chloroplasts. EMBO J 21:6905–6914

    Article  CAS  PubMed  Google Scholar 

  • Zerges W (2000) Translation in chloroplasts. Biochimie 82:583–601

    CAS  Google Scholar 

  • Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Linda Rymarquis and Katia Wostrikoff for their assistance in RNA and protein analysis, Elise Kikis in preparing PCR probes for S1 protection, and Jude Maul for SDR analysis. This work was supported by National Science Foundation award MCB 0091020 to D.B.S., with early experiments supported by a Georges Morel Prize and Guggenheim Fellowship awarded to D.B.S. That phase of the work was carried out in the laboratory of Francis-André Wollman, Institut de Biochimie Physico-Chimique, Paris, where D.B.S. was a sabbatical visitor. We thank all members of that laboratory for their interest and support. C.L.S. was supported by an Olin Graduate Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Stern.

Additional information

Communicated by F.-A. Wollman

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiao, H.S., Hicks, A., Simpson, C. et al. Short dispersed repeats in the Chlamydomonas chloroplast genome are collocated with sites for mRNA 3′ end formation. Curr Genet 45, 311–322 (2004). https://doi.org/10.1007/s00294-004-0487-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-004-0487-7

Keywords

Navigation