Skip to main content

Advertisement

Log in

The AtPPT1 gene encoding 4-hydroxybenzoate polyprenyl diphosphate transferase in ubiquinone biosynthesis is required for embryo development in Arabidopsis thaliana

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

4-Hydroxybenzoate polyprenyl diphosphate transferase (4HPT) is the key enzyme that transfers the prenyl side chain to the benzoquione frame in ubiquinone (UQ) biosynthesis. The Arabidopsis AtPPT1 cDNA encoding 4HPT was cloned by reverse transcription-polymerase chain reaction (RT-PCR) based on the information of the Arabidopsis genomic sequence, and the function of the gene was determined. Heterologous expression of the AtPPT1 gene enabled restoration of the respiratory ability and UQ synthesis in a yeast mutant that was defective in 4HPT activity. The mitochondrial fraction that was prepared from the yeast mutant, which expressed the AtPPT1 gene, exhibited 4HPT enzymatic activity with geranyl diphosphate (GPP) as the prenyl substrate. This indicated that the AtPPT1 gene encodes active 4HPT with a broad substrate specificity in terms of the prenyl donor. The AtPPT1 mRNA was predominantly expressed in the flower cluster, and the green fluorescent protein (GFP) fused with the signal peptide of AtPPT1 was translocated into the mitochondria. T-DNA insertion mutation that disrupts the AtPPT1 gene in Arabidopsis resulted in the arrest of embryo development at an early stage of zygotic embryogenesis. These results demonstrate that the AtPPT1 gene involved in the biosynthesis of mitochondrial UQ plays an essential role in embryo development in Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashby, M. N., Kutsunai, S. Y., Ackerman, S., Tzagolo., A. and Edwards, P. A. 1992. COQ2 is a candidate for the structural gene encoding para-hydroxybenzoate:polyprenyltransferase. J. Biol. Chem. 267:4128–4136.

    PubMed  Google Scholar 

  • Avelange-Macherel, M. H. and Joyard, J. 1998. Cloning and functional expression of AtCOQ3, the Arabidopsis homologue of the yeast COQ3 gene, encoding a methyltransferase from plant mitochondria involved in ubiquinone biosynthesis. Plant J. 14:203–213.

    PubMed  Google Scholar 

  • Bader, M., Muse, W., Ballou, D. P., Gassner, C. and Bardwell, J. C. 1999. Oxidative protein folding is driven by the electron transport system. Cell 98:217–227.

    PubMed  Google Scholar 

  • Clough, S. J. and Bent, A. F. 1998. Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16:735–743.

    PubMed  Google Scholar 

  • Collins, M. D. and Jones, D. 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol. Rev. 45:316–354.

    PubMed  Google Scholar 

  • Ernster, L. and Dallner, G. 1995. Biochemical, physiological and medical aspects of ubiquinone function. Biochim. Biophys. Acta 1271:195–204.

    PubMed  Google Scholar 

  • Ewbank, J. J., Barnes, T. M., Lakowski, B., Lussier, M., Bussey, H. and Hekimi, S. 1997. Structural and functional conservation of the Caenorhabditis elegans timing gene clk-1. Science 275:980–983.

    PubMed  Google Scholar 

  • Frei, B., Kim, M. C. and Ames, B. N. 1990. Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc. Natl. Acad. Sci. USA. 87:4879–4883.

    PubMed  Google Scholar 

  • Grunler, J., Ericsson, J. and Dallner, G. 1994. Branch-point reactions in the biosynthesis of cholesterol, dolichol, ubiquinone and prenylated proteins. Biochim. Biophys. Acta 1212: 259–277.

    PubMed  Google Scholar 

  • Hihi, A. K., Gao, Y. and Hekimi, S. 2002. Ubiquinone is necessary for Caenorhabditis elegans development at mitochondrial and non-mitochondrial sites. J. Biol. Chem. 277: 2202–2206.

    PubMed  Google Scholar 

  • Hirooka, K., Bamba, T., Fukusaki, E. and Kobayashi, A. 2003. Cloning and kinetic characterization of Arabidopsis thaliana solanesyl diphosphate synthase. Biochem. J. 370: 679–686.

    PubMed  Google Scholar 

  • Holland, P. M., Abramson, R. D., Watson, R. and Gelfand, D. H. 1991. Detection of speci c polymerase chain reaction product by utilizing the 5 0–3 0 exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl. Acad. Sci. USA. 88: 7276–7280.

    PubMed  Google Scholar 

  • Huang, J., Struck, F., Matzinger, D. F. and Levings, C. S. 3rd. 1994. Flower-enhanced expression of a nuclear-encoded mitochondrial respiratory protein is associated with changes in mitochondrion number. Plant Cell 3:439–448.

    Google Scholar 

  • Kawamukai, M. 2002. Biosynthesis, bioproduction and novel roles of ubiquinone. J. Biosci. Bioeng. 94:511–517.

    Google Scholar 

  • Lange, B. M. and Ghassemian, M. 2003. Genome organization in Arabidopsis thaliana:a survey for genes involved in isoprenoid and chlorophyll metabolism. Plant Mol. Biol. 51:925–948.

    PubMed  Google Scholar 

  • Levavasseur, F., Miyadera, H., Sirois, J., Tremblay, M. L., Kita, K., Shoubridge, E. and Hekimi, S. 2001. Ubiquinone is necessary for mouse embryonic development but is not essential for mitochondrial respiration. J. Biol. Chem. 276: 46160–46164.

    PubMed  Google Scholar 

  • Lutke-Brinkhaus, F., Liedvogel, B. and Kleinig, H. 1984. On the biosynthesis of ubiquinones in plant mitochondria. Eur. J. Biochem. 141:537–541.

    PubMed  Google Scholar 

  • Meganathan, R. 2001. Ubiquinone biosynthesis in microorganisms. FEMS Microbiol Lett. 203:131–139.

    PubMed  Google Scholar 

  • McKinney, E. C., Ali, N., Traut, A., Feldmann, K. A., Belostotsky, D. A., McDowell, J. M. and Meagher, R. B. 1995. Sequence-based identi cation of T-DNA insertion mutations in Arabidopsis:actin mutants act2–1 and act4–1. Plant J. 8: 613–622.

    PubMed  Google Scholar 

  • Melzer, M. and Heide, L. 1994. Characterization of polyprenyldiphosphate:4-hydroxybenzoate polyprenyltransferase from E. coli. Biochim. Biophys. Acta 1212:93–102.

    Google Scholar 

  • Nakai, D., Yuasa, S., Takahashi, M., Shimizu, T., Asaumi, S., Isono, K., Takao, T., Suzuki, Y., Kuroyanagi, H., Hirokawa, K., Koseki, H. and Shirsawa, T. 2001. Mouse homologue of coq7 /clk-1, longevity gene in Caenorhabditis elegans, is essential for coenzyme Q synthesis, maintenance of mitochondrial integrity, and neurogenesis. Biochem. Biophys. Res. Commun. 289:463–471.

    PubMed  Google Scholar 

  • Okada, K., Kainou, T., Matsuda, H. and Kawamukai, M. 1998. Biological signifcance of the side chain length of ubiquinone in Saccharomyces cerevisiae. FEBS Lett. 431:241–244.

    PubMed  Google Scholar 

  • Okada, K., Saito, T., Nakagawa, T., Kawamukai, M. and Kamiya, Y. 2000. Five geranylgeranyl diphosphate synthases expressed in di. erent organs are localized into three subcellular compartments in Arabidopsis. Plant Physiol. 122:1045–1056.

    PubMed  Google Scholar 

  • Okada, K., Suzuki, K., Kamiya, Y., Zhu, X., Fujisaki, S., Nishimura, Y., Nishino, T., Nakagawa, T., Kawamukai, M. and Matsuda, H. 1996. Polyprenyl diphosphate synthase essentially de nes the length of the side chain of ubiquinone. Biochim. Biophys. Acta 1302:217–223.

    PubMed  Google Scholar 

  • Rentsch, D., Laloi, M., Rouhara, I., Schmelzer, E., Delrot, S. and Frommer, W. B. 1995. NTR1 encodes a high a. nity oligopeptide transporter in Arabidopsis. FEBS Lett. 370:264–268.

    PubMed  Google Scholar 

  • Rodriguez-Aguilera, J. C., Asencio, C., Ruiz-Ferrer, M., Vela, J. and Navas, P. 2003. Caenorhabditis elegans ubiquinone biosynthesis genes. Biofactors 18:2370–244. (Review.)

    Google Scholar 

  • Saiki, R., Ogiyama, Y., Kainou, T., Nishi, T., Matsuda, H. and Kawamukai, M. 2003. Pleiotropic phenotypes of fission yeast defective in ubiquinone-10 production. A study from the abc1Sp (coq8Sp )mutant. Biofactors 18:229–235.

    PubMed  Google Scholar 

  • Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular Cloning:A Laboratory Manual. Cold Spring Harbor, Cold Spring Harbor Laboratory, New York.

    Google Scholar 

  • Suzuki, K., Ueda, M., Yuasa, M., Nakagawa, T., Kawamukai, M. and Matsuda, H. 1994. Evidence that E. coli ubiA product is a functional homolog of yeast COQ2, and the regulation of ubiA gene expression. Biosci. Biotechnol. Biochem. 58: 1814–1819.

    PubMed  Google Scholar 

  • Swiezewska, E., Dallner, G., Andersson, B. and Ernster, L. 1993. Biosynthesis of ubiquinone and plastoquinone in the endoplasmic reticulum-Golgi membranes of spinach leaves. J. Biol. Chem. 268:1494–1499.

    PubMed  Google Scholar 

  • Tsugeki, R., Kochieva, E. Z. and Fedoro., N. V. 1996. A transposon insertion in the Arabidopsis SSR16 gene causes an embryo-defective lethal mutation. Plant J. 10:479–489.

    PubMed  Google Scholar 

  • Uchida, N., Suzuki, K., Saiki, R., Kainou, T., Tanaka, K., Matsuda, H. and Kawamukai, M. 2000. Phenotypes of fission yeast defective in ubiquinone production due to disruption of the gene for p-hydroxybenzoate polyprenyl diphosphate transferase. J. Bacteriol. 182:6933–6939.

    PubMed  Google Scholar 

  • Wanke, M., Dallner, G. and Swiezewska, E. 2000. Subcellular localization of plastoquinone and ubiquinone synthesis in spinach cells. Biochim. Biophys. Acta. 1463:188–194.

    PubMed  Google Scholar 

  • Yamamoto, Y., Matsui, M., Ang, L. H. and Deng, X. W. 1998. Role of a COP1 interactive protein in mediating lightregulated gene expression in Arabidopsis. Plant Cell 10: 1083–1094.

    PubMed  Google Scholar 

  • Yazaki, K., Kunihisa, M., Fujisaki, T. and Sato, F. 2002. Geranyl diphosphate:4-hydroxybenzoate geranyltransferase from Lithospermum erythrorhizon. Cloning and characterization of a key enzyme in shikonin biosynthesis. J. Biol. Chem. 277:6240–6246.

    PubMed  Google Scholar 

  • Zhu, X. F., Suzuki, K., Saito, T., Okada, K., Tanaka, K., Nakagawa, T., Matsuda, H. and Kawamukai, M. 1997. Geranylgeranyl pyrophosphate synthase encoded by the newly isolated gene GGPS6 from Arabidopsis thaliana is localized in mitochondria. Plant Mol. Biol. 35: 331–341.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okada, K., Ohara, K., Yazaki, K. et al. The AtPPT1 gene encoding 4-hydroxybenzoate polyprenyl diphosphate transferase in ubiquinone biosynthesis is required for embryo development in Arabidopsis thaliana . Plant Mol Biol 55, 567–577 (2004). https://doi.org/10.1007/s11103-004-1298-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-004-1298-4

Navigation