Skip to main content
Log in

Agrobacterium tumefaciens-mediated transformation of plants by the pTF-FC2 plasmid is efficient and strictly dependent on the MobA protein

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

In the transformation of plants by Agrobacterium tumefaciens the VirD2 protein has been shown to pilot T-DNA during its transfer to the plant cell nucleus. Other studies have shown that the MobA protein of plasmid RSF1010 is capable of mediating its transfer from Agrobacterium cells to plant cells by a similar process. We have demonstrated previously that plasmid pTF-FC2, which has some similarity to RSF1010, is also able to transfer DNA efficiently. In this study, we performed a mutational analysis of the roles played by A. tumefaciens VirD2 and pTF-FC2 MobA in DNA transfer-mediated by A. tumefaciens carrying pTF-FC2. We show that MobA+/VirD2+ and MobA+/VirD2− strains were equally proficient in their ability to transfer a pTF-FC2-derived plasmid DNA to plants and to transform them. However, the MobA−/VirD2+ strain showed a DNA transfer efficiency of 0.03% compared with that of the other two strains. This sharply contrasts with our results that VirD2 can rather efficiently cleave the oriT sequence of pFT-FC2 in vitro. We therefore conclude that MobA plays a major VirD2-independent role in plant transformation by pTF-FC2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albright, L. M., Yanofsky, M. F., Leroux, B., Ma, D. and Nester, E. W. 1987. Processing of the T-DNA of Agrobacterium tumefaciens generates border nicks and linear, single stranded T-DNA. J. Bacteriol. 16: 1046–1055.

    Google Scholar 

  • Bhattacharjee, M. K. and Meyer, R. J. 1991. A segment of a plasmid gene required for conjugal transfer encodes a site specific, single-strand DNA endonuclease and ligase. Nucleic Acids Res 19: 1129–1137.

    PubMed  Google Scholar 

  • Bonnard, G., Tinland, B., Paulus, F., Szegedi, E. and Otten, L. 1989. Nucleotide sequence, evolutionary origin and biological role of a rearranged cytokinin gene isolated from a wide host range biotype III Agrobacterium strain. Mol. Gen. Genet. 216: 428–438.

    PubMed  Google Scholar 

  • Bravo-Angel, A. M., Hohn, B. and Tinland, B. 1998. The omega sequence of VirD2 is important but not essential for efficient transfer of T-DNA by Agrobacterium tumefaciens. Mol. Plant Microbe-Interact. 11: 57–63.

    PubMed  Google Scholar 

  • Bravo-Angel, A. M., Gloeckler, V., Hohn, B. and Tinland, B. 1999. Bacterial conjugation protein MobA mediates integration of complex DNA structures into plant cells. J. Bacteriol. 181: 5758–5765.

    PubMed  Google Scholar 

  • Buchanan-Wollaston, V., Passiatore, J. E. and Cannon, F. 1987. The mob and oriT of a bacterial plasmid promote its transfer to plants. Nature 328: 172–175.

    Google Scholar 

  • Cohen, A., Fisher, W. D., Curtis III, R. and Adler. H. I. 1986. DNA isolated from Esherichia coli mini cells mated with F + cells. Proc. Natl. Acad. Sci. USA 61: 61–68.

    Google Scholar 

  • Dorrington, R., Bardien, S. and Rawlings, D. 1991. The broadhost-range plasmid PTF-FC2 requires a primase-like protein for autonomous replication in Echerichia coli. Gene 108: 7–14.

    PubMed  Google Scholar 

  • Dumas, F., Duckely, M., Pelzcar, P., van Gelder, P. and Hohn, B. 2001. An Agrobacterium VirE2 channel for T-DNA transport into plant cells. Proc. Natl Acad. Sci. USA 98: 485–490.

    PubMed  Google Scholar 

  • Du ¨rrenberger, F., Crameri, A., Hohn, B. and KoukolikovaNicola, Z. 1989. Covalently bound VirD2 of Agrobacterium tumefaciencs protects the T-DNA from exonucleolytic degradation. Proc. Natl. Acad. Sci. USA 86: 9154–9158.

    PubMed  Google Scholar 

  • Filichkin, S. A. and Gelvin, S. B. 1993. Formation of a putative relaxation intermediate during T-DNA processing directed by the Agrobacterium tumefaciens VirD1, VirD2 endonuclease. Mol. Microbiol. 8: 915–926.

    PubMed  Google Scholar 

  • Gelvin, S. B. 2000. Agrobacterium and plant genes involved in T-DNA transfer and integration. Ann. Rev. Plant Physiol. Plant Mol. Biol. 51: 223–256.

    Google Scholar 

  • Hansen, G. and Chilton, M. D. 1999. Lessons in gene transfer to plants by a gifted microbe. Curr. Topics Microbiol. Immunol. 240: 21–58.

    Google Scholar 

  • Henderson, D. and Meyer, R. 1999. The MobA-linked primase is the only replication protein of R1162 required for conjugal mobilization. J. Bacteriol. 181: 2973–2978.

    PubMed  Google Scholar 

  • Howard, E. A., Winsor, B., De Vos, G. and Zambryski, P. 1989. Activation of the T-DNA transfer process in Agrobacterium results in the generation of a T-strand-protein complex: tight association of VirD2 with the 5 0 ends of T-strands. Proc. Natl Acad. Sci. USA 86: 4017–4021.

    Google Scholar 

  • Lanka, E. and Lessl, M. 1994. Common mechanisms in bacterial conjugation and Ti-mediated T-DNA transfer to plant cells. Cell 77: 321–324.

    PubMed  Google Scholar 

  • Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plantarum 15: 473–497.

    Google Scholar 

  • Pansegrau, W., Schoumacher, F., Hohn, B. and Lanka, E. 1993. Site specific cleavage and joining of single stranded DNA by VirD2 protein of Agrobacterium tumefaciens Ti plasmids;analogy to bacterial conjugation. Proc. Natl Acad. Sci. USA 90: 11538–11542.

    PubMed  Google Scholar 

  • Pansegrau, W., Schörder, W. and Lanka, E. 1994. Concerted action of three distinct domains in the DNA cleaving-joining reaction catalyzed by relaxase (TraI)of conjugative plasmid RP4. J. Biol. Chem. 269: 2782–2789.

    PubMed  Google Scholar 

  • Perwez, T. and Meyer, R. 1999. Stabilization of the relaxosome and stimulation of conjugal transfer are genetically distinct functions of the R1162 protein MobB. J. Bacteriol. 181: 2124–2134.

    PubMed  Google Scholar 

  • Puchta, H. and Hohn, B. 1991. The mechanism of extrachromosomal homologous DNA recombination in plant cells. Mol. Gen. Genet. 230: 1–7.

    PubMed  Google Scholar 

  • Rawlings, D. E., Pretorius, I. and Woods, D. R. 1984. Expression of a Thiobacillus ferooxidans origin of replication in E. coli. J. Bacteriol. 158: 737–738.

    PubMed  Google Scholar 

  • Rawlings, D. E. and Tietze, E. 2001. Comparative biology of IncQ and IncQ-like plasmids. Microbiol. Mol. Biol. Rev. 65: 481–496.

    PubMed  Google Scholar 

  • Ream, W. 1989. Agrobacterium tumefaciens and interkingdom genetic exchange. Ann. Rev. Phytopathol. 27: 583–618.

    Google Scholar 

  • Relic, B., Andjelkovic, M., Rossi, L., Nagamine, Y. and Hohn, B. 1998. Interaction of the DNA modifying proteins VirD1 and VirD2 of Agrobacterium tumefaciens: analysis by subcellular localization in mammalian cells. Proc. Natl Acad. Sci. USA 95: 9105–9110.

    PubMed  Google Scholar 

  • Rohrer, J. and Rawlings, D. 1992. Sequence analysis and characterization of the mobilization region of a broad-host plasmid, pTF-FC2, isolated from Thiobacillus ferooxidans. J. Bacteriol. 174: 6230–6237.

    PubMed  Google Scholar 

  • Rossi, L., Hohn, B. and Tinland, B. 1993a. The VirD2 protein of Agrobacterium tumefaciens carries nuclear localization signals important for transfer of T-DNA to plants. Mol. Gen. Genet. 239: 345–353.

    PubMed  Google Scholar 

  • Rossi, L., Escudero, J., Hohn, B. and Tinland, B. 1993b. Efficient and sensitive assay for T-DNA-dependent transient gene expression. Plant Mol. Biol. Rep. 11: 220–229.

    Google Scholar 

  • Sambrook, J. and Russell, D. W. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Scheiffele, P., Pansengrau, W. and Lanka, E. 1995. Initiation of Agrobacterium tumefaciens T-DNA processing: puri ed protein VirD1, VirD2 catalyze site-and strand-specific cleavage of super helical T-border DNA in vitro. J. Biol. Chem. 270: 1269–1276.

    PubMed  Google Scholar 

  • Scherzinger, E., Bagdasarian, M. M., Scholz, P., Lurz, R., Ruckert, B. and Bagdasarian, M. 1984. Replication of the broad-host-range plasmid RSF1010: requirement for three plasmid-encoded proteins. Proc. Natl Acad. Sci. USA 81: 654–658.

    PubMed  Google Scholar 

  • Shadenkov, A. A., Kovaleva, M. V., Kuzmin, E. V., Uzbekova, S. V. and Shemyakin, M. F. 1996. VirD2-independent but MobA-dependent transfer of broad-host-range plasmid RSF1010 DNA from Agrobacterium into plant cell nucleus. Mol. Biol. 30: 272–275.

    Google Scholar 

  • Shurvinton, C. E., Hodges, L. and Ream, W. 1992. A nuclear localization signal and the C-terminal omega sequence in the Agrobacterium tumefaciens VirD2 endonuclease are important for tumor formation. Proc. Natl Acad. Sci. USA 89: 11837–11841.

    PubMed  Google Scholar 

  • Stachel, S. E. and Zambryski, P. C. 1986. Agrobacterium tumefaciens and the susceptible plant cell: a novel adaptation of extracellular recognition and DNA conjugation. Cell 47: 155–157.

    PubMed  Google Scholar 

  • Stachel, S. E., Timmerman, B. and Zambryski, P. 1986. Generation of single-stranded T-DNA molecules during the initial stages of T-DNA transfer from Agrobacterium tumefaciens to plant cells. Nature 322: 706–711.

    Google Scholar 

  • Thompson, C. J., Rao Movva, N., Tizard, R., Crameri, R., Davies, J. E., Lauwereys, M. and Botterman, J. 1987. Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J. 6: 2519–2523.

    Google Scholar 

  • Tinland, B., Schoumacher, F., Gloeckler, V., Bravo-Angel, A. M. and Hohn, B. 1995. The Agrobacterium tumefaciens virulence protein D2 is responsible for precise integration of T-DNA into the plant genome. EMBO J. 14: 3585–3595.

    PubMed  Google Scholar 

  • Tz ra, T. and Citovsky, V. 2002. Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium. Trends Cell Biol. 12: 121–129.

    PubMed  Google Scholar 

  • Wang, K., Stachel, E., Timmerman, B., Van Montagu, M. and Zambryski, P. 1987. Site specific nick in the T-DNA border sequence as a result of Agrobacterium vir gene expression. Science 235: 587–591.

    Google Scholar 

  • Yanofsky, M. F., Porter, S. G., Young, C., Albright, L. A., Gordon, M. P. and Nester, E. W. 1986. The virD operon of Agrobacterium encodes a site-specific endonuclease. Cell 47: 471–477.

    PubMed  Google Scholar 

  • Zhang, S. and Meyer, R. J. 1997. The relaxosome protein MobC promotes conjugal plasmid mobilization by extending DNA strand separation to the nick site at the origin of transfer. Mol. Microbiol. 25: 509–516.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dube, T., Kovalchuk, I., Hohn, B. et al. Agrobacterium tumefaciens-mediated transformation of plants by the pTF-FC2 plasmid is efficient and strictly dependent on the MobA protein. Plant Mol Biol 55, 531–539 (2004). https://doi.org/10.1007/s11103-004-1159-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-004-1159-1

Navigation