Skip to main content

Advertisement

Log in

Clinical efficacy of optical coherence tomography in sellar mass lesions: a meta-analysis

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Purpose

Although optical coherence tomography (OCT) of the eyes has been studied to detect and monitor sellar masses, there is no recommendation for selecting the most effective measurement of OCT in clinical practice. Thus, we conducted a meta-analysis to examine the efficacy of OCT in sellar mass lesions.

Methods

We conducted a literature search in PubMed and EMBASE through April 26, 2020. The primary outcomes were the thickness of the peripapillary retinal nerve fiber layer (pRNFL) and the macular ganglion cell complex (mGCC). The secondary outcomes included the thickness of the macular ganglion cell and inner plexiform layer (mGCIPL) and macular thickness. Random-effects models were used in all meta-analyses. Additionally, we conducted meta-regressions and subgroup analyses.

Results

We included 22 studies, involving 1347 eyes of patients and 1198 eyes of controls. When compared with the control group, the reductions in pRNFL, mGCC and macular thickness in the patient group were significantly different, whereas significant thinning of the mGCIPL was restricted to the nasal hemiretina. Furthermore, we found that before visual field (VF) defects occurred, significant thinning of the pRNFL and mGCC thickness could be detected by OCT. The change in OCT parameters also showed different patterns in different types of pituitary adenomas.

Conclusions

Sellar mass lesions were associated with the changes in OCT measurements. The characteristic patterns of the OCT parameters may refine the diagnostic accuracy. Moreover, the alterations of OCT metrics before VF defects indicate the efficacy of OCT in early detection. Different types of pituitary adenomas may vary in OCT measurements, and their specific features warrant further research efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

All data relevant to the study are included in the article or uploaded as online supplementary information.

References

  1. Bresson D, Herman P, Polivka M, Froelich S (2016) Sellar lesions/pathology. Otolaryngol Clin N Am 49:63–93. https://doi.org/10.1016/j.otc.2015.09.004

    Article  Google Scholar 

  2. Danesh-Meyer HV, Yoon JJ, Lawlor M, Savino PJ (2019) Visual loss and recovery in chiasmal compression. Prog Retin Eye Res 73:100765. https://doi.org/10.1016/j.preteyeres.2019.06.001

    Article  PubMed  Google Scholar 

  3. Molitch ME (2017) Diagnosis and treatment of pituitary adenomas: a review. JAMA 317:516–524. https://doi.org/10.1001/jama.2016.19699

    Article  PubMed  Google Scholar 

  4. Blanch RJ, Micieli JA, Oyesiku NM, Newman NJ, Biousse V (2018) Optical coherence tomography retinal ganglion cell complex analysis for the detection of early chiasmal compression. Pituitary 21:515–523. https://doi.org/10.1007/s11102-018-0906-2

    Article  CAS  PubMed  Google Scholar 

  5. Jeon C, Park KA, Hong SD, Choi JW, Seol HJ, Nam DH, Lee JI, Shin HJ, Kong DS (2019) Clinical efficacy of optical coherence tomography to predict the visual outcome after endoscopic endonasal surgery for suprasellar tumors. World Neurosurg 132:e722–e731. https://doi.org/10.1016/j.wneu.2019.08.031

    Article  PubMed  Google Scholar 

  6. Danesh-Meyer HV, Wong A, Papchenko T, Matheos K, Stylli S, Nichols A, Frampton C, Daniell M, Savino PJ, Kaye AH (2015) Optical coherence tomography predicts visual outcome for pituitary tumors. J Clin Neurosci 22:1098–1104. https://doi.org/10.1016/j.jocn.2015.02.001

    Article  PubMed  Google Scholar 

  7. Al-Louzi O, Prasad S, Mallery RM (2018) Utility of optical coherence tomography in the evaluation of sellar and parasellar mass lesions. Curr Opin Endocrinol Diabetes Obes 25:274–284. https://doi.org/10.1097/MED.0000000000000415

    Article  PubMed  Google Scholar 

  8. Danesh-Meyer HV, Carroll SC, Foroozan R, Savino PJ, Fan J, Jiang Y, Vander Hoorn S (2006) Relationship between retinal nerve fiber layer and visual field sensitivity as measured by optical coherence tomography in chiasmal compression. Investig Ophthalmol Vis Sci 47:4827–4835. https://doi.org/10.1167/iovs.06-0327

    Article  Google Scholar 

  9. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA 283:2008–2012. https://doi.org/10.1001/jama.283.15.2008

    Article  CAS  PubMed  Google Scholar 

  10. Rostom A, Dubé C, Cranney A et al (2004) Celiac disease. Rockville (MD): agency for healthcare research and quality (US); 2004 (Evidence reports/technology assessments, No. 104.) Appendix D. Quality assessment forms. https://www.ncbi.nlm.nih.gov/books/NBK35156/. Accessed 30 Apr 2020

  11. Yang L, Qu Y, Lu W, Liu F (2016) Evaluation of macular ganglion cell complex and peripapillary retinal nerve fiber layer in primary craniopharyngioma by fourier-domain optical coherence tomography. Med Sci Monit 22:2309–2314. https://doi.org/10.12659/msm.896221

    Article  PubMed  PubMed Central  Google Scholar 

  12. Monteiro ML, Cunha LP, Vessani RM (2008) Comparison of retinal nerve fiber layer measurements using Stratus OCT fast and regular scan protocols in eyes with band atrophy of the optic nerve and normal controls. Arq Bras Oftalmol 71:534–539. https://doi.org/10.1590/s0004-27492008000400013

    Article  PubMed  Google Scholar 

  13. Monteiro ML, Cunha LP, Costa-Cunha LV, Maia OJ, Oyamada MK (2009) Relationship between optical coherence tomography, pattern electroretinogram and automated perimetry in eyes with temporal hemianopia from chiasmal compression. Investig Ophthalmol Vis Sci 50:3535–3541. https://doi.org/10.1167/iovs.08-3093

    Article  Google Scholar 

  14. Zhang X, Ma J, Wang YH, Gan LY, Li L, Wang XQ, Li DH, Xing B, Feng M, Zhu HJ, Lu L, Feng F, You H, Zhang ZH, Zhong Y (2019) the correlation of ganglion cell layer thickness with visual field defect in non-functional pituitary adenoma with chiasm compression. Zhonghua Yan Ke Za Zhi 55:186–194. https://doi.org/10.3760/cma.j.issn.0412-4081.2019.03.007

    Article  CAS  PubMed  Google Scholar 

  15. Duru N, Ersoy R, Altinkaynak H, Duru Z, Cagil N, Cakir B (2016) Evaluation of retinal nerve fiber layer thickness in acromegalic patients using spectral-domain optical coherence tomography. Semin Ophthalmol 31:285–290. https://doi.org/10.3109/08820538.2014.962165

    Article  PubMed  Google Scholar 

  16. Yum HR, Park SH, Park HY, Shin SY (2016) Macular ganglion cell analysis determined by cirrus HD optical coherence tomography for early detecting chiasmal compression. PLoS ONE 11:e153064. https://doi.org/10.1371/journal.pone.0153064

    Article  CAS  Google Scholar 

  17. Tang Y, Qu YZ, Yang L, Wang J, Wang LN, Fang M, Lu W (2012) Assessing the damage to visual function by optical coherence tomography and the visual field test in Saddle area tumor patients. Zhonghua Yan Ke Za Zhi 48:1001–1004

    PubMed  Google Scholar 

  18. Ohkubo S, Higashide T, Takeda H, Murotani E, Hayashi Y, Sugiyama K (2012) Relationship between macular ganglion cell complex parameters and visual field parameters after tumor resection in chiasmal compression. Jpn J Ophthalmol 56:68–75. https://doi.org/10.1007/s10384-011-0093-4

    Article  PubMed  Google Scholar 

  19. Moon CH, Hwang SC, Kim BT, Ohn YH, Park TK (2011) Visual prognostic value of optical coherence tomography and photopic negative response in chiasmal compression. Investig Ophthalmol Vis Sci 52:8527–8533. https://doi.org/10.1167/iovs.11-8034

    Article  Google Scholar 

  20. Costa-Cunha LV, Cunha LP, Malta RF, Monteiro ML (2009) Comparison of Fourier-domain and time-domain optical coherence tomography in the detection of band atrophy of the optic nerve. Am J Ophthalmol 147:56–63. https://doi.org/10.1016/j.ajo.2008.07.020

    Article  PubMed  Google Scholar 

  21. Jacob M, Raverot G, Jouanneau E, Borson-Chazot F, Perrin G, Rabilloud M, Tilikete C, Bernard M, Vighetto A (2009) Predicting visual outcome after treatment of pituitary adenomas with optical coherence tomography. Am J Ophthalmol 147:64–70. https://doi.org/10.1016/j.ajo.2008.07.016

    Article  PubMed  Google Scholar 

  22. Monteiro ML, Leal BC, Rosa AA, Bronstein MD (2004) Optical coherence tomography analysis of axonal loss in band atrophy of the optic nerve. Br J Ophthalmol 88:896–899. https://doi.org/10.1136/bjo.2003.038489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cennamo G, Auriemma RS, Cardone D, Grasso LF, Velotti N, Simeoli C, Di Somma C, Pivonello R, Colao A, de Crecchio G (2015) Evaluation of the retinal nerve fibre layer and ganglion cell complex thickness in pituitary macroadenomas without optic chiasmal compression. Eye (Lond) 29:797–802. https://doi.org/10.1038/eye.2015.35

    Article  CAS  Google Scholar 

  24. Tieger MG, Hedges TR, Ho J, Erlich-Malona NK, Vuong LN, Athappilly GK, Mendoza-Santiesteban CE (2017) Ganglion cell complex loss in chiasmal compression by brain tumors. J Neuroophthalmol 37:7–12. https://doi.org/10.1097/WNO.0000000000000424

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sahin M, Sahin A, Kilinc F, Yuksel H, Ozkurt ZG, Turkcu FM, Pekkolay Z, Soylu H, Caca I (2017) Retina ganglion cell/inner plexiform layer and peripapillary nerve fiber layer thickness in patients with acromegaly. Int Ophthalmol 37:591–598. https://doi.org/10.1007/s10792-016-0310-8

    Article  PubMed  Google Scholar 

  26. Pekel G, Akin F, Erturk MS, Acer S, Yagci R, Hiraali MC, Cetin EN (2014) Chorio-retinal thickness measurements in patients with acromegaly. Eye (Lond) 28:1350–1354. https://doi.org/10.1038/eye.2014.216

    Article  CAS  Google Scholar 

  27. Nakamura M, Ishikawa-Tabuchi K, Kanamori A, Yamada Y, Negi A (2012) Better performance of RTVue than Cirrus spectral-domain optical coherence tomography in detecting band atrophy of the optic nerve. Graefes Arch Clin Exp Ophthalmol 250:1499–1507. https://doi.org/10.1007/s00417-012-2095-4

    Article  PubMed  Google Scholar 

  28. Moura FC, Medeiros FA, Monteiro ML (2007) Evaluation of macular thickness measurements for detection of band atrophy of the optic nerve using optical coherence tomography. Ophthalmology 114:175–181. https://doi.org/10.1016/j.ophtha.2006.06.045

    Article  PubMed  Google Scholar 

  29. Sun M, Zhang Z, Ma C, Chen S, Chen X (2017) Quantitative analysis of retinal layers on three-dimensional spectral-domain optical coherence tomography for pituitary adenoma. PLoS ONE 12:e179532. https://doi.org/10.1371/journal.pone.0179532

    Article  CAS  Google Scholar 

  30. Monteiro ML, Hokazono K, Fernandes DB, Costa-Cunha LV, Sousa RM, Raza AS, Wang DL, Hood DC (2014) Evaluation of inner retinal layers in eyes with temporal hemianopic visual loss from chiasmal compression using optical coherence tomography. Investig Ophthalmol Vis Sci 55:3328–3336. https://doi.org/10.1167/iovs.14-14118

    Article  Google Scholar 

  31. Sousa RM, Oyamada MK, Cunha LP, Monteiro M (2017) Multifocal visual evoked potential in eyes with temporal hemianopia from chiasmal compression: correlation with standard automatecd perimetry and OCT findings. Investig Ophthalmol Vis Sci 58:4436–4449. https://doi.org/10.1167/iovs.17-21529

    Article  Google Scholar 

  32. Moura FC, Costa-Cunha LV, Malta RF, Monteiro ML (2010) Relationship between visual field sensitivity loss and quadrantic macular thickness measured with Stratus-Optical coherence tomography in patients with chiasmal syndrome. Arq Bras Oftalmol 73:409–413. https://doi.org/10.1590/s0004-27492010000500004

    Article  PubMed  Google Scholar 

  33. Akashi A, Kanamori A, Ueda K, Matsumoto Y, Yamada Y, Nakamura M (2014) The detection of macular analysis by SD-OCT for optic chiasmal compression neuropathy and nasotemporal overlap. Investig Ophthalmol Vis Sci 55:4667–4672. https://doi.org/10.1167/iovs.14-14766

    Article  Google Scholar 

  34. Jeong AR, Kim EY, Kim NR (2016) Preferential ganglion cell loss in the nasal hemiretina in patients with pituitary tumor. J Neuroophthalmol 36:152–155. https://doi.org/10.1097/WNO.0000000000000331

    Article  PubMed  Google Scholar 

  35. Lee J, Kim SW, Kim DW, Shin JY, Choi M, Oh MC, Kim SM, Kim EH, Kim SH, Byeon SH (2016) Predictive model for recovery of visual field after surgery of pituitary adenoma. J Neurooncol 130:155–164. https://doi.org/10.1007/s11060-016-2227-5

    Article  PubMed  Google Scholar 

  36. Rogers A, Karavitaki N, Wass JA (2014) Diagnosis and management of prolactinomas and non-functioning pituitary adenomas. BMJ 349:g5390. https://doi.org/10.1136/bmj.g5390

    Article  CAS  PubMed  Google Scholar 

  37. Fleming T, Balderas-Márquez JE, Epardo D, Ávila-Mendoza J, Carranza M, Luna M, Harvey S, Arámburo C, Martínez-Moreno CG (2019) Growth hormone neuroprotection against kainate excitotoxicity in the retina is mediated by Notch/PTEN/Akt signaling. Investig Ophthalmol Vis Sci 60:4532–4547. https://doi.org/10.1167/iovs.19-27473

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received for this research.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: YZ and YC; Methodology: JM and YC; Data collection and analysis: BZ and LG; Writing-original draft preparation: YC; Review and editing: all authors; Supervision: YZ. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yong Zhong.

Ethics declarations

Conflict of interests

The authors declare that they have no conflicts of interest.

Ethical approval

This is a meta-analysis based on observational studies.

Informed consent

Informed consent from patients and ethical approval for this type of study are not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1366 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chou, Y., Zhang, B., Gan, L. et al. Clinical efficacy of optical coherence tomography in sellar mass lesions: a meta-analysis. Pituitary 23, 733–744 (2020). https://doi.org/10.1007/s11102-020-01072-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-020-01072-w

Keywords

Navigation