Skip to main content

Advertisement

Log in

Machine learning applications in imaging analysis for patients with pituitary tumors: a review of the current literature and future directions

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Purpose

To provide an overview of fundamental concepts in machine learning (ML), review the literature on ML applications in imaging analysis of pituitary tumors for the last 10 years, and highlight the future directions on potential applications of ML for pituitary tumor patients.

Method

We presented an overview of the fundamental concepts in ML, its various stages used in healthcare, and highlighted the key components typically present in an imaging-based tumor analysis pipeline. A search was conducted across four databases (PubMed, Ovid, Embase, and Google Scholar) to gather research articles from the past 10 years (2009-2019) involving imaging related to pituitary tumor and ML. We grouped the studies by imaging modalities and analyzed the ML tasks in terms of the data inputs, reference standards, methodologies, and limitations.

Results

Of the 16 studies included in our analysis, 10 appeared in 2018–2019. Most of the studies utilized retrospective data and followed a semi-automatic ML pipeline. The studies included use of magnetic resonance imaging (MRI), facial photographs, surgical microscopic video, spectrometry, and spectroscopy imaging. The objectives of the studies covered 14 distinct applications and majority of the studies addressed a binary classification problem. Only five of the 11 MRI-based studies had an external validation or a holdout set to test the performance of a final trained model.

Conclusion

Through our concise evaluation and comparison of the studies using the concepts presented, we highlight future directions so that potential ML applications using different imaging modalities can be developed to benefit the clinical care of pituitary tumor patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ML:

Machine learning

AI:

Artificial intelligence

NLP:

Natural language processing

GBM:

Glioblastoma multiforme

PA:

Pituitary adenoma

ACTH:

Adrenocorticotrophic hormone

TSH:

Thyrotropin

OCT:

Optical coherence tomography

CT:

Computed tomography

MRI:

Magnetic resonance imaging

CV:

Cross-validation

LOOCV:

Leave-one-out cross validation

DNN:

Deep neural network

References

  1. Shalev-Shwartz S, Ben-David S (2014) Understanding machine learning: from theory to algorithms. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Young T, Hazarika D, Poria S, Cambria E (2018) Recent trends in deep learning based natural language processing. IEEE Comput Intell Mag 13:55–75

    Article  Google Scholar 

  3. Voulodimos A, Doulamis N, Doulamis A, Protopapadakis E (2018) Deep learning for computer vision: a brief review. Comput Intell Neurosci 2018:7068349. https://doi.org/10.1155/2018/7068349

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brunetti A, Buongiorno D, Trotta GF, Bevilacqua V (2018) Computer vision and deep learning techniques for pedestrian detection and tracking: a survey. Neurocomputing 300:17–33

    Article  Google Scholar 

  5. Garcia-Garcia A, Orts-Escolano S, Oprea S, Villena-Martinez V, Martinez-Gonzalez P, Garcia-Rodriguez J (2018) A survey on deep learning techniques for image and video semantic segmentation. Appl Soft Comput 70:41–65

    Article  Google Scholar 

  6. Buczak AL, Guven E (2015) A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun Surv Tutor 18:1153–1176

    Article  Google Scholar 

  7. Nguyen G, Dlugolinsky S, Bobák M, Tran V, García ÁL, Heredia I, Malík P, Hluchý L (2019) Machine learning and deep learning frameworks and libraries for large-scale data mining: a survey. Artif Intell Rev 52:77–124

    Article  Google Scholar 

  8. Kim D-H, Kim TJY, Wang X, Kim M, Quan Y-J, Oh JW, Min S-H, Kim H, Bhandari B, Yang I (2018) Smart machining process using machine learning: a review and perspective on machining industry. Int J Precis Eng Manuf Technol 5:555–568

    Article  Google Scholar 

  9. Frutos-Pascual M, Zapirain BG (2015) Review of the use of AI techniques in serious games: decision making and machine learning. IEEE Trans Comput Intell AI Games 9:133–152

    Article  Google Scholar 

  10. Justesen N, Bontrager P, Togelius J, Risi S (2019) Deep learning for video game playing. IEEE Trans Games. https://doi.org/10.1109/TG.2019.2896986

    Article  Google Scholar 

  11. Zhang Q, Yang LT, Chen Z, Li P (2018) A survey on deep learning for big data. Inf Fusion 42:146–157

    Article  Google Scholar 

  12. Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, Cui C, Corrado G, Thrun S, Dean J (2019) A guide to deep learning in healthcare. Nat Med 25:24

    Article  CAS  PubMed  Google Scholar 

  13. Chen M, Hao Y, Hwang K, Wang L, Wang L (2017) Disease prediction by machine learning over big data from healthcare communities. IEEE Access 5:8869–8879

    Article  Google Scholar 

  14. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436

    Article  CAS  PubMed  Google Scholar 

  15. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88. https://doi.org/10.1016/j.media.2017.07.005

    Article  PubMed  Google Scholar 

  16. Mazurowski MA, Buda M, Saha A, Bashir MR (2019) Deep learning in radiology: an overview of the concepts and a survey of the state of the art with focus on MRI. J Magn Reson Imaging 49:939–954. https://doi.org/10.1002/jmri.26534

    Article  PubMed  Google Scholar 

  17. Ko J, Swetter SM, Blau HM, Esteva A, Kuprel B, Novoa RA, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542:115

    Article  PubMed  PubMed Central  Google Scholar 

  18. Buda M, Wildman-Tobriner B, Hoang JK, Thayer D, Tessler FN, Middleton WD, Mazurowski MA (2019) Management of thyroid nodules seen on US images: deep learning may match performance of radiologists. Radiology 292(3):695–701. https://doi.org/10.1148/radiol.2019181343

    Article  PubMed  Google Scholar 

  19. Bychkov D, Linder N, Turkki R, Nordling S, Kovanen PE, Verrill C, Walliander M, Lundin M, Haglund C, Lundin J (2018) Deep learning based tissue analysis predicts outcome in colorectal cancer. Sci Rep 8:3395. https://doi.org/10.1038/s41598-018-21758-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lenchik L, Heacock L, Weaver AA, Boutin RD, Cook TS, Itri J, Filippi CG, Gullapalli RP, Lee J, Zagurovskaya M, Retson T, Godwin K, Nicholson J, Narayana PA (2019) Automated segmentation of tissues using CT and MRI: a systematic review. Acad Radiol. https://doi.org/10.1016/j.acra.2019.07.006

    Article  PubMed  PubMed Central  Google Scholar 

  21. Omuro A (2013) Glioblastoma and other malignant gliomas. JAMA 310(17):1842–1850. https://doi.org/10.1001/jama.2013.280319

    Article  CAS  PubMed  Google Scholar 

  22. Melmed S (2011) Pathogenesis of pituitary tumors. Nat Rev Endocrinol 7:257

    Article  CAS  PubMed  Google Scholar 

  23. Kaltsas GA, Nomikos P, Kontogeorgos G, Buchfelder M, Grossman AB (2005) Diagnosis and management of pituitary carcinomas. J Clin Endocrinol Metab 90:3089–3099. https://doi.org/10.1210/jc.2004-2231

    Article  CAS  PubMed  Google Scholar 

  24. Lake MG, Krook LS, Cruz SV (2013) Pituitary adenomas: an overview. Am Fam Physician 88:319–327

    PubMed  Google Scholar 

  25. Calligaris D, Feldman DR, Norton I, Olubiyi O, Changelian AN, Machaidze R, Vestal ML, Laws ER, Dunn IF, Santagata S, Agar NYR (2015) MALDI mass spectrometry imaging analysis of pituitary adenomas for near-real-time tumor delineation. Proc Natl Acad Sci USA 112:9978–9983. https://doi.org/10.1073/pnas.1423101112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Drummond JB, Ribeiro-Oliveira A, Soares BS (2000) Non-functioning pituitary adenomas. MDText.com Inc., South Dartmouth

    Google Scholar 

  27. Lobatto DJ, Steffens ANV, Najafabadi Z, Andela AH, Pereira CD, van den Hout AM, Peul WB, Vliet WC, Vlieland TPM, Biermasz NR, van Furth WR (2018) Work disability and its determinants in patients with pituitary tumor-related disease. Pituitary 21:593–604. https://doi.org/10.1007/s11102-018-0913-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ezzat S, Asa SL, Couldwell WT, Barr CE, Dodge WE, Vance ML, McCutcheon IE (2004) The prevalence of pituitary adenomas: a systematic review. Cancer 101:613–619. https://doi.org/10.1002/cncr.20412

    Article  PubMed  Google Scholar 

  29. Lara D de, Filho LFSD, Prevedello DM, Otto BA, Carrau RL (2012) Application of image guidance in pituitary surgery. Surg Neurol Int 3:S73. https://doi.org/10.4103/2152-7806.95418

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chen CC, Carter BS, Wang R, Patel KS, Hess C, Bodach ME, Tumialan LM, Oyesiku NM, Patil CG, Litvack Z, Zada G, Aghi MK (2016) Congress of neurological surgeons systematic review and evidence-based guideline on preoperative imaging assessment of patients with suspected nonfunctioning pituitary adenomas. Neurosurgery 79:E524–E526. https://doi.org/10.1227/NEU.0000000000001391

    Article  PubMed  Google Scholar 

  31. Fathalla H, Cusimano MD, Di Ieva A, Lee J, Alsharif O, Goguen J, Zhang S, Smyth H (2015) Endoscopic versus microscopic approach for surgical treatment of acromegaly. Neurosurg Rev 38:541–549. https://doi.org/10.1007/s10143-015-0613-7

    Article  PubMed  Google Scholar 

  32. Qaddoura A, Shalung TN, Meier MP, Goguen J, Jing R, Zhang S, Kovacs K, Cusimano MD (2019) Recovery room cortisol predicts long-term glucocorticoid need after transsphenoidal surgery for pituitary tumors. Neurosurgery 84:616–623. https://doi.org/10.1093/neuros/nyy070

    Article  PubMed  Google Scholar 

  33. Wu V, Cusimano MD, Lee JM (2018) Extent of surgery in endoscopic transsphenoidal skull base approaches and the effects on sinonasal morbidity. Am J Rhinol Allergy 32:52–56. https://doi.org/10.2500/ajra.2018.32.4499

    Article  PubMed  Google Scholar 

  34. Di Ieva A, Rotondo F, Syro LV, Cusimano MD, Kovacs K (2014) Aggressive pituitary adenomas-diagnosis and emerging treatments. Nat Rev Endocrinol 10:423

    Article  PubMed  Google Scholar 

  35. Erickson BJ, Korfiatis P, Akkus Z, Kline TL (2017) Machine learning for medical imaging. Radiographics 37:505–515. https://doi.org/10.1148/rg.2017160130

    Article  PubMed  Google Scholar 

  36. Madabhushi A, Lee G (2016) Image analysis and machine learning in digital pathology: challenges and opportunities. Med Image Anal 33:170–175. https://doi.org/10.1016/J.MEDIA.2016.06.037

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pesapane F, Codari M, Sardanelli F (2018) Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur Radiol Exp 2:35. https://doi.org/10.1186/s41747-018-0061-6

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, Ding D, Bagul A, Langlotz C, Shpanskaya K, et al (2017) CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv1711.05225.

  39. Shickel B, Tighe PJ, Bihorac A, Rashidi P (2017) Deep EHR: a survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE J Biomed Health Inf 22:1589–1604

    Article  Google Scholar 

  40. Pellegrini E, Ballerini L, Hernandez M, del Chappell CV, González-Castro FM, Anblagan V, Danso D, Muñoz-Maniega S, Job S, Pernet D, Mair C, MacGillivray G, Trucco TJ, Wardlaw E (2018) Machine learning of neuroimaging for assisted diagnosis of cognitive impairment and dementia: a systematic review. Alzheimer Dement Diagn Assess Dis Monit 10:519–535. https://doi.org/10.1016/j.dadm.2018.07.004

    Article  Google Scholar 

  41. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577. https://doi.org/10.1148/radiol.2015151169

    Article  PubMed  Google Scholar 

  42. Lotan E, Jain R, Razavian N, Fatterpekar GM, Lui YW (2019) State of the art: machine learning applications in glioma imaging. Am J Roentgenol 212:26–37. https://doi.org/10.2214/AJR.18.20218

    Article  Google Scholar 

  43. Zeynalova A, Kocak B, Durmaz ES, Comunoglu N, Ozcan K, Ozcan G, Turk O, Tanriover N, Kocer N, Kizilkilic O, Islak C (2019) Preoperative evaluation of tumour consistency in pituitary macroadenomas: a machine learning-based histogram analysis on conventional T2-weighted MRI. Neuroradiology 61(7):767–774. https://doi.org/10.1007/s00234-019-02211-2

    Article  PubMed  Google Scholar 

  44. Fan Y, Hua M, Mou A, Wu M, Liu X, Bao X, Wang R, Feng M (2019) Preoperative noninvasive radiomics approach predicts tumor consistency in patients with acromegaly: development and multicenter prospective validation. Front Endocrinol 10:403. https://doi.org/10.3389/fendo.2019.00403

    Article  Google Scholar 

  45. Niu J, Zhang S, Ma S, Diao J, Zhou W, Tian J, Zang Y, Jia W (2019) Preoperative prediction of cavernous sinus invasion by pituitary adenomas using a radiomics method based on magnetic resonance images. Eur Radiol 29(3):1625–1634. https://doi.org/10.1007/s00330-018-5725-3

    Article  PubMed  Google Scholar 

  46. Zhang S, Song G, Zang Y, Jia J, Wang C, Li C, Tian J, Dong D, Zhang Y (2018) Non-invasive radiomics approach potentially predicts non-functioning pituitary adenomas subtypes before surgery. Eur Radiol 28:3692–3701. https://doi.org/10.1007/s00330-017-5180-6

    Article  PubMed  Google Scholar 

  47. Kocak B, Durmaz ES, Kadioglu P, Polat Korkmaz O, Comunoglu N, Tanriover N, Kocer N, Islak C, Kizilkilic O (2019) Predicting response to somatostatin analogues in acromegaly: machine learning-based high-dimensional quantitative texture analysis on T2-weighted MRI. Eur Radiol 29:2731–2739. https://doi.org/10.1007/s00330-018-5876-2

    Article  PubMed  Google Scholar 

  48. Liu Y, Liu X, Hong X, Liu P, Bao X, Yao Y, Xing B, Li Y, Huang Y, Zhu H, Lu L, Wang R, Feng M (2019) Prediction of recurrence after transsphenoidal surgery for Cushing’s disease: the use of machine learning algorithms. Neuroendocrinology 108:201–210. https://doi.org/10.1159/000496753

    Article  CAS  PubMed  Google Scholar 

  49. Lilja Y, Gustafsson O, Ljungberg M, Starck G, Lindblom B, Skoglund T, Bergquist H, Jakobsson K-E, Nilsson D (2017) Visual pathway impairment by pituitary adenomas: quantitative diagnostics by diffusion tensor imaging. J Neurosurg 127:569–579. https://doi.org/10.3171/2016.8.jns161290

    Article  PubMed  Google Scholar 

  50. van Griethuysen JJM, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin J-C, Pieper S, Aerts HJWL (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77:e104–e107. https://doi.org/10.1158/0008-5472.CAN-17-0339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Staartjes VE, Serra C, Muscas G, Maldaner N, Akeret K, van Niftrik CHB, Fierstra J, Holzmann D, Regli L (2018) Utility of deep neural networks in predicting gross-total resection after transsphenoidal surgery for pituitary adenoma: a pilot study. Neurosurg Focus 45(5):E12. https://doi.org/10.3171/2018.8.focus18243

    Article  PubMed  Google Scholar 

  52. Egger J, Freisleben B, Nimsky C, Kapur T (2012) Template-cut: a pattern-based segmentation paradigm. Sci Rep 2:420. https://doi.org/10.1038/srep00420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Staartjes VE, Zattra CM, Akeret K, Maldaner N, Muscas G, van BasNiftrik CH, Fierstra J, Regli L, Serra C (2019) Neural network-based identification of patients at high risk for intraoperative cerebrospinal fluid leaks in endoscopic pituitary surgery. J Neurosurg. https://doi.org/10.3171/2019.4.jns19477

    Article  PubMed  Google Scholar 

  54. Ugga L, Cuocolo R, Solari D, Guadagno E, D’amico A, Somma T, Cappabianca P, De Caro LDB, Cavallo LM, Brunetti A (2019) Prediction of high proliferative index in pituitary macroadenomas using MRI-based radiomics and machine learning. Neuroradiology 61:1365–1373. https://doi.org/10.1007/s00234-019-02266-1

    Article  PubMed  Google Scholar 

  55. Schneider HJ, Kosilek RP, Günther M, Roemmler J, Stalla GK, Sievers C, Reincke M, Schopohl J, Würtz RP (2011) A novel approach to the detection of acromegaly: accuracy of diagnosis by automatic face classification. J Clin Endocrinol Metab 96(7):2074–2080. https://doi.org/10.1210/jc.2011-0237

    Article  CAS  PubMed  Google Scholar 

  56. Kong X, Gong S, Su L, Howard N, Kong Y (2018) Automatic detection of acromegaly from facial photographs using machine learning methods. EBioMedicine 27:94–102. https://doi.org/10.1016/j.ebiom.2017.12.015

    Article  PubMed  Google Scholar 

  57. Li A, Liu W, Cao P, Zheng Y, Bu Z, Zhou T (2017) Endoscopic versus microscopic transsphenoidal surgery in the treatment of pituitary adenoma: a systematic review and meta-analysis. World Neurosurg 101:236–246. https://doi.org/10.1016/j.wneu.2017.01.022

    Article  PubMed  Google Scholar 

  58. Lalys F, Riffaud L, Morandi X, Jannin P (2010) Automatic phases recognition in pituitary surgeries by microscope images classification. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), pp 34–44

  59. Steiner G, Mackenroth L, Geiger KD, Stelling A, Pinzer T, Uckermann O, Sablinskas V, Schackert G, Koch E, Kirsch M (2012) Label-free differentiation of human pituitary adenomas by FT-IR spectroscopic imaging. Anal Bioanal Chem 403:727–735

    Article  CAS  PubMed  Google Scholar 

  60. Saha A, Yu X, Sahoo D, Mazurowski MA (2017) Effect of MRI scanner parameters on breast cancer radiomics. Expert Syst Appl 87:384–391. https://doi.org/10.1016/j.eswa.2017.06.029

    Article  PubMed  PubMed Central  Google Scholar 

  61. Mackin D, Fave X, Zhang L, Fried D, Yang J, Taylor B, Rodriguez-Rivera E, Dodge C, Jones AK, Court L (2015) Measuring computed tomography scanner variability of radiomics features. Invest Radiol 50:757–765. https://doi.org/10.1097/rli.0000000000000180

    Article  PubMed  PubMed Central  Google Scholar 

  62. Saha A, Harowicz MR, Mazurowski MA (2018) Breast cancer MRI radiomics: an overview of algorithmic features and impact of inter-reader variability in annotating tumors. Med Phys 45(7):3076–3085. https://doi.org/10.1002/mp.12925

    Article  PubMed  Google Scholar 

  63. Pavic M, Bogowicz M, Würms X, Glatz S, Finazzi T, Riesterer O, Roesch J, Rudofsky L, Friess M, Veit-Haibach P, Huellner M, Opitz I, Weder W, Frauenfelder T, Guckenberger M, Tanadini-Lang S (2018) Influence of inter-observer delineation variability on radiomics stability in different tumor sites. Acta Oncol 57:1070–1074. https://doi.org/10.1080/0284186X.2018.1445283

    Article  PubMed  Google Scholar 

  64. Paul JS, Plassard AJ, Landman BA, Fabbri D (2017) Deep learning for brain tumor classification. In: Proc. SPIE, vol 10137. https://doi.org/10.1117/12.2254195

  65. Swati ZNK, Zhao Q, Kabir M, Ali F, Ali Z, Ahmed S, Lu J (2019) Brain tumor classification for MR images using transfer learning and fine-tuning. Comput Med Imaging Graph 75:34–46. https://doi.org/10.1016/j.compmedimag.2019.05.001

    Article  PubMed  Google Scholar 

  66. Deepak S, Ameer PM (2019) Brain tumor classification using deep CNN features via transfer learning. Comput Biol Med 111:103345. https://doi.org/10.1016/j.compbiomed.2019.103345

    Article  CAS  PubMed  Google Scholar 

  67. Davies BM, Carr E, Soh C, Gnanalingham KK (2018) Assessing size of pituitary adenomas: a comparison of qualitative and quantitative methods on MR. Acta Neurochir 158(4):677–683. https://doi.org/10.1007/s00701-015-2699-7

    Article  Google Scholar 

  68. Van Essen M, Sundin A, Krenning EP, Kwekkeboom DJ (2014) Neuroendocrine tumours: the role of imaging for diagnosis and therapy. Nat Rev Endocrinol 10:102

    Article  PubMed  Google Scholar 

  69. Saha A, Harowicz MR, Grimm LJ, Kim CE, Ghate SV, Walsh R, Mazurowski MA (2018) A machine learning approach to radiogenomics of breast cancer: a study of 922 subjects and 529 DCE-MRI features. Br J Cancer 119:508–516. https://doi.org/10.1038/s41416-018-0185-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Grossmann P, Stringfield O, El-Hachem N, Bui MM, Rios Velazquez E, Parmar C, Leijenaar RT, Haibe-Kains B, Lambin P, Gillies RJ, Aerts HJ (2017) Defining the biological basis of radiomic phenotypes in lung cancer. Elife 6:e23421. https://doi.org/10.7554/eLife.23421

    Article  PubMed  PubMed Central  Google Scholar 

  71. Smith CP, Czarniecki M, Mehralivand S, Stoyanova R, Choyke PL, Harmon S, Turkbey B (2019) Radiomics and radiogenomics of prostate cancer. Abdom Radiol 44:2021–2029. https://doi.org/10.1007/s00261-018-1660-7

    Article  Google Scholar 

  72. Micko ASG, Wöhrer A, Wolfsberger S, Knosp E (2015) Invasion of the cavernous sinus space in pituitary adenomas: endoscopic verification and its correlation with an MRI-based classification. J Neurosurg 122(4):803–811. https://doi.org/10.3171/2014.12.jns141083

    Article  PubMed  Google Scholar 

  73. Jacob M, Raverot G, Jouanneau E, Borson-Chazot F, Perrin G, Rabilloud M, Tilikete C, Bernard M, Vighetto A (2009) Predicting visual outcome after treatment of pituitary adenomas with optical coherence tomography. Am J Ophthalmol 147:64-70.e2. https://doi.org/10.1016/j.ajo.2008.07.016

    Article  PubMed  Google Scholar 

  74. Moon CH, Hwang SC, Kim B-T, Ohn Y-H, Park TK (2011) Visual prognostic value of optical coherence tomography and photopic negative response in chiasmal compression. Investig Opthalmol Vis Sci 52:8527. https://doi.org/10.1167/iovs.11-8034

    Article  Google Scholar 

  75. Buchfelder M, Schlaffer S-M (2016) Intraoperative magnetic resonance imaging for pituitary adenomas. In: Frontiers of hormone research. Karger Publishers, Berlin, pp 121–132

  76. Sylvester PT, Evans JA, Zipfel GJ, Chole RA, Uppaluri R, Haughey BH, Getz AE, Silverstein J, Rich KM, Kim AH, Dacey RG, Chicoine MR (2015) Combined high-field intraoperative magnetic resonance imaging and endoscopy increase extent of resection and progression-free survival for pituitary adenomas. Pituitary 18(1):72–85. https://doi.org/10.1007/s11102-014-0560-2

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ijare OB, Baskin DS, Pichumani K (2019) Ex vivo 1H NMR study of pituitary adenomas to differentiate various immunohistochemical subtypes. Sci Rep 9:3007. https://doi.org/10.1038/s41598-019-38542-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y, Porz N, Slotboom J, Wiest R (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34:1993–2024

    Article  PubMed  Google Scholar 

  79. Luo S, Li X, Li J, Luo SH (2017) Automatic Alzheimer’s disease recognition from MRI data using deep learning method. J Appl Math Phys 5:1892–1898. https://doi.org/10.4236/jamp.2017.59159

    Article  Google Scholar 

  80. Petersen RC, Aisen PS, Beckett LA, Donohue MC, Gamst AC, Harvey DJ, Jack CR Jr, Jagust WJ, Shaw LM, Toga AW, Trojanowski JQ, Weiner MW (2010) Alzheimer’s disease neuroimaging initiative (ADNI): clinical characterization. Neurology 74:201–209. https://doi.org/10.1212/WNL.0b013e3181cb3e25

    Article  PubMed  PubMed Central  Google Scholar 

  81. Cheng J, Huang W, Cao S, Yang R, Yang W, Yun Z, Wang Z, Feng Q (2015) Enhanced performance of brain tumor classification via tumor region augmentation and partition. PLoS ONE 10:e0140381. https://doi.org/10.1371/journal.pone.0140381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Qiao N: A systematic review on machine learning in sellar region diseases: quality and reporting items. Endocr Connect 952–960 (2019). https://doi.org/10.1530/ec-19-0156

  83. Collins GS, Moons KGM (2019) Reporting of artificial intelligence prediction models. Lancet 393:1577–1579. https://doi.org/10.1016/S0140-6736(19)30037-6

    Article  PubMed  Google Scholar 

  84. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

  85. Lin T-Y, Maire M, Belongie S, Bourdev L, Girshick R, Hays J, Perona P, Ramanan D, Zitnick CL, Dollár P (2014) Microsoft COCO: common objects in context. Springer, New York

    Google Scholar 

  86. Kaggle K (2019) Competitions. https://www.kaggle.com/competitions

Download references

Funding

The financial support provided through the Canadian Institute for Military and Veteran Health Research (CIMVHR) and patient donations (BrainMatters Foundation, the Dodig foundation) and Ryerson University are gratefully acknowledged. The opinions expressed in this work are authors’ and not of those the supporting agencies that provided the funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashirbani Saha.

Ethics declarations

Conflict of interest

The authors do not have any other conflict of interest to disclose.

Human and animal rights

This article is a review and does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, A., Tso, S., Rabski, J. et al. Machine learning applications in imaging analysis for patients with pituitary tumors: a review of the current literature and future directions. Pituitary 23, 273–293 (2020). https://doi.org/10.1007/s11102-019-01026-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-019-01026-x

Keywords

Navigation