Skip to main content
Log in

AVP-NPII gene mutations and clinical characteristics of the patients with autosomal dominant familial central diabetes insipidus

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Background

Familial central diabetes insipidus (DI), usually an autosomal dominant disorder, is caused by mutations in arginine vasopressin-neurophysin II (AVP-NPII) gene that leads to aberrant preprohormone processing and gradual destruction of AVP-secreting cells.

Objective

To determine clinical and molecular characteristics of patients with familial central DI from two different Turkish families.

Materials and methods

The diagnosis of central DI was established by 24-h urine collection, water deprivation test, and desmopressin challenge. To confirm the diagnosis of familial central DI, the entire coding region of AVP-NPII gene was amplified and sequenced. A total of eight affected patients and three unaffected healthy relatives from two families were studied.

Results

Genetic analysis revealed a previously reported heterozygous mutation (p.C98X) in family A, and a heterozygous novel mutation (p.G45C) in family B, both detected in exon 2 of AVP-NPII gene. When we compared the clinical characteristics of the two families, it was noticed that as the age of onset of symptoms in family A ranges between 4 and 7 years, it was <1 year in family B. Additionally, pituitary bright spot was present in the affected siblings, but absent in their affected parents.

Conclusion

Familial central DI is a progressive disease, and age of onset of symptoms can differ depending on the mutation. Bright spot on pituitary MRI might be present at onset, but become invisible over time. Genetic testing and appropriate counseling should be given in familial cases of central DI to ensure adequate treatment, and to avoid chronic water deprivation that might result in growth retardation in childhood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Land H, Schutz G, Schmale H, Richter D (1982) Nucleotide sequence of cloned cDNA encoding bovine arginine vasopressin–neurophysin II precursor. Nature 295(5847):299–303

    Article  CAS  PubMed  Google Scholar 

  2. Sausville E, Carney D, Battey J (1985) The human vasopressin gene is linked to the oxytocin gene and is selectively expressed in a cultured lung cancer cell line. J Biol Chem 260(18):10236–10241

    CAS  PubMed  Google Scholar 

  3. Arima H, Morishita Y, Hagiwara D, Hayashi M, Oiso Y (2014) Endoplasmic reticulum stress in vasopressin neurons of familial diabetes insipidus model mice: aggregate formation and mRNA poly(A) tail shortening. Exp Physiol 99(1):66–71. doi:10.1113/expphysiol.2013.072553

    Article  CAS  PubMed  Google Scholar 

  4. Elias PC, Elias LL, Torres N, Moreira AC, Antunes-Rodrigues J, Castro M (2003) Progressive decline of vasopressin secretion in familial autosomal dominant neurohypophyseal diabetes insipidus presenting a novel mutation in the vasopressin–neurophysin II gene. Clin Endocrinol 59(4):511–518

    Article  CAS  Google Scholar 

  5. Mahoney CP, Weinberger E, Bryant C, Ito M, Jameson JL, Ito M (2002) Effects of aging on vasopressin production in a kindred with autosomal dominant neurohypophyseal diabetes insipidus due to the DeltaE47 neurophysin mutation. J Clin Endocrinol Metab 87(2):870–876. doi:10.1210/jcem.87.2.8270

    CAS  PubMed  Google Scholar 

  6. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42(Web Server issue):W252–W258. doi:10.1093/nar/gku340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22(2):195–201. doi:10.1093/bioinformatics/bti770

    Article  CAS  PubMed  Google Scholar 

  8. Kiefer F, Arnold K, Kunzli M, Bordoli L, Schwede T (2009) The SWISS-MODEL Repository and associated resources. Nucleic Acids Res 37(Database issue):D387–D392. doi:10.1093/nar/gkn750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Guex N, Peitsch MC, Schwede T (2009) Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis 30(Suppl 1):S162–S173. doi:10.1002/elps.200900140

    Article  PubMed  Google Scholar 

  10. Brownstein MJ, Russell JT, Gainer H (1980) Synthesis, transport, and release of posterior pituitary hormones. Science 207(4429):373–378

    Article  CAS  PubMed  Google Scholar 

  11. Ito M, Yu RN, Jameson JL (1999) Mutant vasopressin precursors that cause autosomal dominant neurohypophyseal diabetes insipidus retain dimerization and impair the secretion of wild-type proteins. J Biol Chem 274(13):9029–9037

    Article  CAS  PubMed  Google Scholar 

  12. Russell TA, Ito M, Ito M, Yu RN, Martinson FA, Weiss J, Jameson JL (2003) A murine model of autosomal dominant neurohypophyseal diabetes insipidus reveals progressive loss of vasopressin-producing neurons. J Clin Investig 112(11):1697–1706. doi:10.1172/jci18616

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Bergeron C, Kovacs K, Ezrin C, Mizzen C (1991) Hereditary diabetes insipidus: an immunohistochemical study of the hypothalamus and pituitary gland. Acta Neuropathol 81(3):345–348

    Article  CAS  PubMed  Google Scholar 

  14. Nagasaki H, Ito M, Yuasa H, Saito H, Fukase M, Hamada K, Ishikawa E, Katakami H, Oiso Y (1995) Two novel mutations in the coding region for neurophysin-II associated with familial central diabetes insipidus. J Clin Endocrinol Metab 80(4):1352–1356. doi:10.1210/jcem.80.4.7714110

    CAS  PubMed  Google Scholar 

  15. Baglioni S, Corona G, Maggi M, Serio M, Peri A (2004) Identification of a novel mutation in the arginine vasopressin–neurophysin II gene affecting the sixth intrachain disulfide bridge of the neurophysin II moiety. Eur J Endocrinol 151(5):605–611

    Article  CAS  PubMed  Google Scholar 

  16. DiMeglio LA, Gagliardi PC, Browning JE, Quigley CA, Repaske DR (2001) A missense mutation encoding cys(67) → gly in neurophysin ii is associated with early onset autosomal dominant neurohypophyseal diabetes insipidus. Mol Genet Metab 72(1):39–44. doi:10.1006/mgme.2000.3117

    Article  CAS  PubMed  Google Scholar 

  17. Rittig S, Robertson GL, Siggaard C, Kovacs L, Gregersen N, Nyborg J, Pedersen EB (1996) Identification of 13 new mutations in the vasopressin–neurophysin II gene in 17 kindreds with familial autosomal dominant neurohypophyseal diabetes insipidus. Am J Hum Genet 58(1):107–117

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Chen LQ, Rose JP, Breslow E, Yang D, Chang WR, Furey WF Jr, Sax M, Wang BC (1991) Crystal structure of a bovine neurophysin II dipeptide complex at 2.8 A determined from the single-wavelength anomalous scattering signal of an incorporated iodine atom. Proc Natl Acad Sci USA 88(10):4240–4244

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Ito M, Jameson JL, Ito M (1997) Molecular basis of autosomal dominant neurohypophyseal diabetes insipidus. Cellular toxicity caused by the accumulation of mutant vasopressin precursors within the endoplasmic reticulum. J Clin Investig 99(8):1897–1905. doi:10.1172/jci119357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Hayashi M, Arima H, Ozaki N, Morishita Y, Hiroi M, Ozaki N, Nagasaki H, Kinoshita N, Ueda M, Shiota A, Oiso Y (2009) Progressive polyuria without vasopressin neuron loss in a mouse model for familial neurohypophysial diabetes insipidus. Am J Physiol Regul Integr Comp Physiol 296:1641–1649

    Article  Google Scholar 

  21. Birkegaard C, Christensen JH, Falorni A, Marzotti S, Minarelli V, Gregersen N, Rittig S (2013) A novel variation in the AVP gene resulting in familial neurohypophyseal diabetes insipidus in a large Italian kindred. Pituitary 16(2):152–157. doi:10.1007/s11102-012-0392-x

    Article  CAS  PubMed  Google Scholar 

  22. Batista SL, Moreira AC, Antunes-Rodrigues J, Castro M, Elias LL, Elias PC (2010) Clinical features and molecular analysis of arginine-vasopressin neurophysin II gene in long-term follow-up patients with idiopathic central diabetes insipidus. Arquivos brasileiros de endocrinologia e metabologia 54(3):269–273

    Article  PubMed  Google Scholar 

  23. Brachet C, Birk J, Christophe C, Tenoutasse S, Velkeniers B, Heinrichs C, Rutishauser J (2011) Growth retardation in untreated autosomal dominant familial neurohypophyseal diabetes insipidus caused by one recurring and two novel mutations in the vasopressin-neurophysin II gene. Eur J Endocrinol 164(2):179–187. doi:10.1530/eje-10-0823

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doga Turkkahraman.

Ethics declarations

Financial support/disclosure

This research was funded by the Scientific and Technological Research Council of Turkey (SBAG Project No: 112S513).

Conflict of interest

Authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turkkahraman, D., Saglar, E., Karaduman, T. et al. AVP-NPII gene mutations and clinical characteristics of the patients with autosomal dominant familial central diabetes insipidus. Pituitary 18, 898–904 (2015). https://doi.org/10.1007/s11102-015-0668-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-015-0668-z

Keywords

Navigation