Skip to main content

Advertisement

Log in

MicroRNA involvement in a metastatic non-functioning pituitary carcinoma

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Purpose

Pituitary carcinomas are extremely rare neoplasms, and molecular events leading to malignant pituitary transformation are largely unknown. Enhanced understanding of molecular mechanisms driving malignant pituitary progression would be beneficial for pituitary carcinoma diagnosis and treatment.

Methods

Differential microRNA expression in paired primary and metastatic pituitary carcinoma specimens were detected using high-throughput human microRNA microarrays and TaqMan microRNA arrays. Three of significantly deregulated miRNAs were further confirmed using quantitative real-time PCR in the metastatic carcinoma, six atypical pituitary adenomas and eight typical pituitary adenomas. Target genes of microRNAs were bioinformatically predicated and verified in vitro by Western blotting and real-time PCR and in vivo by immunohistochemistry respectively.

Results

We present a case of a 50-year-old woman harboring non-functioning pituitary carcinoma with multiple intracranial metastases, and identified up-regulation of miR-20a, miR-106b and miR-17-5p in the metastatic carcinoma as compared to the primary neoplasm. Furthermore, miR-20a and miR-17-5p were increased in the metastatic carcinoma and six atypical pituitary adenomas as compared to eight typical pituitary adenomas as measured by quantitative real-time PCR. Both PTEN and TIMP2 were bioinformatically predicated and confirmed in vitro as target genes of these three microRNAs. As semi-quantified by immunohistochemistry, PTEN was absent and TIMP2 was decreased in the metastatic pituitary carcinoma as compared to pituitary adenomas.

Conclusions

Our results suggest microRNA involvement in malignant pituitary progression, whereby increased miR-20a, miR-106b and miR-17-5p promote metastasis by attenuating PTEN and TIMP2 in pituitary carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lloyd RV, Kovacs K, Young WF Jr, Farrel WE, Asa SL, Trouillas J et al (2004) Pituitary tumors: introduction. In: DeLellis RA, Lloyd RV, Heitz PU, Eng C (eds) Tumors of pituitary, chapter 1. Pathology and genetics of tumours of endocrine organs. World Health Organization Classification of Tumours. IARC Press, Lyon

    Google Scholar 

  2. Amar AP, Hinton DR, Krieger MD, Weiss MH (1999) Invasive pituitary adenomas: significance of proliferation parameters. Pituitary 2:117–122

    Article  CAS  PubMed  Google Scholar 

  3. Thapar K, Kovacs K, Scheithauer BW, Stefaneanu L, Horvath E, Pernicone PJ et al (1996) Proliferative activity and invasiveness among pituitary adenomas and carcinomas: an analysis using the MIB-1 antibody. Neurosurgery 38(99–106):106–107

    Google Scholar 

  4. Kaltsas GA, Grossman AB (1998) Malignant pituitary tumours. Pituitary 1:69–81

    Article  CAS  PubMed  Google Scholar 

  5. Ragel BT, Couldwell WT (2004) Pituitary carcinoma: a review of the literature. Neurosurg Focus 16:E7

    Article  PubMed  Google Scholar 

  6. Sironi M, Cenacchi G, Cozzi L, Tonnarelli G, Iacobellis M, Trere D et al (2002) Progression on metastatic neuroendocrine carcinoma from a recurrent prolactinoma: a case report. J Clin Pathol 55:148–151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  8. Cuellar TL, McManus MT (2005) MicroRNAs and endocrine biology. J Endocrinol 187:327–332

    Article  CAS  PubMed  Google Scholar 

  9. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866

    Article  CAS  PubMed  Google Scholar 

  10. Ma L, Weinberg RA (2008) MicroRNAs in malignant progression. Cell Cycle 7:570–572

    Article  CAS  PubMed  Google Scholar 

  11. Butz H, Liko I, Czirjak S, Igaz P, Korbonits M, Racz K et al (2011) MicroRNA profile indicates downregulation of the TGFbeta pathway in sporadic non-functioning pituitary adenomas. Pituitary 14:112–124

    Article  CAS  PubMed  Google Scholar 

  12. Cheunsuchon P, Zhou Y, Zhang X, Lee H, Chen W, Nakayama Y et al (2011) Silencing of the imprinted DLK1-MEG3 locus in human clinically nonfunctioning pituitary adenomas. Am J Pathol 179:2120–2130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. D’Angelo D, Palmieri D, Mussnich P, Roche M, Wierinckx A, Raverot G et al (2012) Altered microRNA expression profile in human pituitary GH adenomas: down-regulation of miRNA targeting HMGA1, HMGA2, and E2F1. J Clin Endocrinol Metab 97:E1128–E1138

    Article  PubMed  Google Scholar 

  14. Leone V, Langella C, D’Angelo D, Mussnich P, Wierinckx A, Terracciano L et al (2014) Mir-23b and miR-130b expression is downregulated in pituitary adenomas. Mol Cell Endocrinol 390:1–7

    Article  CAS  PubMed  Google Scholar 

  15. Palmieri D, D’Angelo D, Valentino T, De Martino I, Ferraro A, Wierinckx A et al (2012) Downregulation of HMGA-targeting microRNAs has a critical role in human pituitary tumorigenesis. Oncogene 31:3857–3865

    Article  CAS  PubMed  Google Scholar 

  16. Palumbo T, Faucz FR, Azevedo M, Xekouki P, Iliopoulos D, Stratakis CA (2013) Functional screen analysis reveals miR-26b and miR-128 as central regulators of pituitary somatomammotrophic tumor growth through activation of the PTEN-AKT pathway. Oncogene 32:1651–1659

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Stilling G, Sun Z, Zhang S, Jin L, Righi A, Kovacs G, Korbonits M, Scheithauer BW, Kovacs K, Lloyd RV (2010) MicroRNA expression in ACTH-producing pituitary tumors: up-regulation of microRNA-122 and -493 in pituitary carcinomas. Endocrine 38:67–75

    Article  CAS  PubMed  Google Scholar 

  18. Trivellin G, Butz H, Delhove J, Igreja S, Chahal HS, Zivkovic V, McKay T, Patocs A, Grossman AB, Korbonits M (2012) MicroRNA miR-107 is overexpressed in pituitary adenomas and inhibits the expression of aryl hydrocarbon receptor-interacting protein in vitro. Am J Physiol Endocrinol Metab 303:E708–E719

    Article  CAS  PubMed  Google Scholar 

  19. Melmed S (2011) Pathogenesis of pituitary tumors. Nat Rev Endocrinol 7:257–266

    Article  CAS  PubMed  Google Scholar 

  20. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    Article  PubMed Central  PubMed  Google Scholar 

  21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  22. Feng ZZ, Chen JW, Yang ZR, Lu GZ, Cai ZG (2012) Expression of PTTG1 and PTEN in endometrial carcinoma: correlation with tumorigenesis and progression. Med Oncol 29:304–310

    Article  CAS  PubMed  Google Scholar 

  23. Rhodes A, Jasani B, Balaton AJ, Miller KD (2000) Immunohistochemical demonstration of oestrogen and progesterone receptors: correlation of standards achieved on in house tumours with that achieved on external quality assessment material in over 150 laboratories from 26 countries. J Clin Pathol 53:292–301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Lee YS, Dutta A (2009) MicroRNAs in cancer. Annu Rev Pathol 4:199–227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Gadelha MR, Kasuki L, Denes J, Trivellin G, Korbonits M (2013) MicroRNAs: suggested role in pituitary adenoma pathogenesis. J Endocrinol Invest 36:889–895

    Article  CAS  PubMed  Google Scholar 

  26. Fan X, Liu Y, Jiang J, Ma Z, Wu H, Liu T et al (2010) miR-20a promotes proliferation and invasion by targeting APP in human ovarian cancer cells. Acta Biochim Biophys Sin 42:318–324

    Article  CAS  PubMed  Google Scholar 

  27. Huang G, Nishimoto K, Zhou Z, Hughes D, Kleinerman ES (2012) miR-20a encoded by the miR-17-92 cluster increases the metastatic potential of osteosarcoma cells by regulating Fas expression. Cancer Res 72:908–916

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Chang Y, Liu C, Yang J, Liu G, Feng F, Tang J et al (2013) MiR-20a triggers metastasis of gallbladder carcinoma. J Hepatol 59:518–527

    Article  CAS  PubMed  Google Scholar 

  29. Poliseno L, Salmena L, Riccardi L, Fornari A, Song MS, Hobbs RM et al (2010) Identification of the miR-106b ~ 25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Sci Signal 3:a29

    Article  Google Scholar 

  30. Yau WL, Lam CS, Ng L, Chow AK, Chan ST, Chan JY et al (2013) Over-expression of miR-106b promotes cell migration and metastasis in hepatocellular carcinoma by activating epithelial-mesenchymal transition process. PLoS one 8:e57882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Fang L, Li H, Wang L, Hu J, Jin T, Wang J et al (2014) MicroRNA-17-5p promotes chemotherapeutic drug resistance and tumour metastasis of colorectal cancer by repressing PTEN expression. Oncotarget 5:2974–2987

    PubMed Central  PubMed  Google Scholar 

  32. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  34. Cantley LC, Neel BG (1999) New insights into tumor suppression: pTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA 96:4240–4245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Mayo LD, Donner DB (2002) The PTEN, Mdm2, p53 tumor suppressor-oncoprotein network. Trends Biochem Sci 27:462–467

    Article  CAS  PubMed  Google Scholar 

  36. Yamada KM, Araki M (2001) Tumor suppressor PTEN: modulator of cell signaling, growth, migration and apoptosis. J Cell Sci 114:2375–2382

    CAS  PubMed  Google Scholar 

  37. Zhang LL, Liu J, Lei S, Zhang J, Zhou W, Yu HG (2014) PTEN inhibits the invasion and metastasis of gastric cancer via downregulation of FAK expression. Cell Signal 26:1011–1020

    Article  CAS  PubMed  Google Scholar 

  38. Ma F, Zhang J, Zhong L, Wang L, Liu Y, Wang Y et al (2014) Upregulated microRNA-301a in breast cancer promotes tumor metastasis by targeting PTEN and activating Wnt/beta-catenin signaling. Gene 535:191–197

    Article  CAS  PubMed  Google Scholar 

  39. Wong GS, Rustgi AK (2013) Matricellular proteins: priming the tumour microenvironment for cancer development and metastasis. Br J Cancer 108:755–761

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Danilewicz M, Sikorska B, Wagrowska-Danilewicz M (2003) Prognostic significance of the immunoexpression of matrix metalloproteinase MMP2 and its inhibitor TIMP2 in laryngeal cancer. Med Sci Monit 9:T42–T47

    Google Scholar 

  41. Kazes I, Elalamy I, Sraer JD, Hatmi M, Nguyen G (2000) Platelet release of trimolecular complex components MT1-MMP/TIMP2/MMP2: involvement in MMP2 activation and platelet aggregation. Blood 96:3064–3069

    CAS  PubMed  Google Scholar 

  42. DeClerck YA, Perez N, Shimada H, Boone TC, Langley KE, Taylor SM (1992) Inhibition of invasion and metastasis in cells transfected with an inhibitor of metalloproteinases. Cancer Res 52:701–708

    CAS  PubMed  Google Scholar 

  43. Li H, Lindenmeyer F, Grenet C, Opolon P, Menashi S, Soria C et al (2001) AdTIMP-2 inhibits tumor growth, angiogenesis, and metastasis, and prolongs survival in mice. Hum Gene Ther 12:515–526

    Article  CAS  PubMed  Google Scholar 

  44. Nuovo GJ, MacConnell PB, Simsir A, Valea F, French DL (1995) Correlation of the in situ detection of polymerase chain reaction-amplified metalloproteinase complementary DNAs and their inhibitors with prognosis in cervical carcinoma. Cancer Res 55:267–275

    CAS  PubMed  Google Scholar 

  45. Scheithauer BW, Kovacs KT, Laws EJ, Randall RV (1986) Pathology of invasive pituitary tumors with special reference to functional classification. J Neurosurg 65:733–744

    Article  CAS  PubMed  Google Scholar 

  46. Scheithauer BW, Kurtkaya-Yapicier O, Kovacs KT, Young WJ, Lloyd RV (2005) Pituitary carcinoma: a clinicopathological review. Neurosurgery 56:1066–1074

    PubMed  Google Scholar 

  47. Kontogeorgos G (2005) Classification and pathology of pituitary tumors. Endocrine 28:27–35

    Article  CAS  PubMed  Google Scholar 

  48. Pasquel FJ, Vincentelli C, Brat DJ, Oyesiku NM, Ioachimescu AG (2013) Pituitary carcinoma in situ. Endocr Pract 19:e69–e73

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Shijuan Gao (Institute of Microbiology, Chinese Academy of Sciences, Beijing, China) for her advice on this work. This work was supported by the National Natural Science Foundation of China (No. 81072084 and No. 81372414) and Beijing capital development fund (No. 2011400106).

Conflict of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Research involving human participants

The protocol collecting primary pituitary tumors was approved by the Institutional Review Board at the Wuhan General Hospital (Wuhan, China); the protocol harvesting the metastatic lesion and other pituitary tumor specimens was approved by the Institutional Review Board at the Peking Union Medical College Hospital (Beijing, China).

Informed consent

Informed consent was obtained from each individual patient at the Wuhan General Hospital and the Peking Union Medical College Hospital.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huijuan Zhu or Renzhi Wang.

Additional information

Zhengqing Wei and Cuiqi Zhou have contributed equally to this publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Z., Zhou, C., Liu, M. et al. MicroRNA involvement in a metastatic non-functioning pituitary carcinoma. Pituitary 18, 710–721 (2015). https://doi.org/10.1007/s11102-015-0648-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-015-0648-3

Keywords

Navigation