Skip to main content
Log in

Expression of cell growth negative regulators MEG3 and GADD45γ is lost in most sporadic human pituitary adenomas

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

We aimed at the evaluation of MEG3 and GADD45γ expression in sporadic functioning and clinically non-functioning human pituitary adenomas, morphologically characterized by immunohistochemistry analysis and their association with clinical features. Thirty eight patients who had undergone hypophysectomy at São José Hospital of Irmandade Santa Casa de Misericórdia in Porto Alegre, Brazil, were included in this study. We evaluated tumor-type specific MEG3 and GADD45γ expression by qRT-PCR in the pituitary adenomas, and its association with clinical features, as age, gender and tumor size, obtained from medical records. The patients consisted of 21 males and 17 females and the mean age was 47 ± 14 (mean ± SD), ranging from 18 to 73 years-old. Of these 14 were clinically non-functioning, 10 GH-secreting, 9 PRL-secreting, and 5 ACTH-secreting pituitary adenomas. All samples were macroadenomas, except four ACTH-secreting tumors, which were microadenomas. In summary, MEG3 and GADD45γ expression was significantly lost in most clinically non-functioning adenomas (78 and 92%, respectively). Other assessed pituitary tumor phenotypes expressed both genes at significantly different levels, and, in some cases, with overexpression. There was no significant association between gene expression and the analyzed clinical features. Our results confirm the previous report, which indicated that MEG3 and GADD45γ expression is lost in the majority of human pituitary tumors, mainly in clinically-nonfunctioning adenomas. Functioning tumors had differences of relative expression levels. The two groups of tumors are probably genetically different and may have a different natural history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

MEG3 :

Maternally expressed gene 3

GADD45γ :

Growth arrest and DNA damage-inducible gamma

qRT-PCR:

Quantitative reverse transcriptase

GH:

Growth hormone

PRL:

Prolactin

ACTH:

Adrenocorticotropic hormone

References

  1. CBTRUS (2010) Central Brain Tumor Registry of the United States Statistical Report 2004–2006. United States

  2. Asa SL, Ezzat S (2009) The pathogenesis of pituitary tumors. Annu Rev Pathol 4:97–126. doi:10.1146/annurev.pathol.4.110807.092259

    Article  PubMed  CAS  Google Scholar 

  3. Kovacs K, Horvath E, Vidal S (2001) Classification of pituitary adenomas. J Neurooncol 54(2):121–127

    Article  PubMed  CAS  Google Scholar 

  4. Greenman Y, Stern N (2009) Non-functioning pituitary adenomas. Best Pract Res Clin Endocrinol Metab 23(5):625–638. doi:S1521-690X(09)00051-7[pii]10.1016/j.beem.2009.05.005

    Article  PubMed  CAS  Google Scholar 

  5. Korbonits M, Carlsen E (2009) Recent clinical and pathophysiological advances in non-functioning pituitary adenomas. Horm Res 71(Suppl 2):123–130. doi:000192449[pii]10.1159/000192449

    Article  PubMed  CAS  Google Scholar 

  6. Vandeva S, Jaffrain-Rea ML, Daly AF, Tichomirowa M, Zacharieva S, Beckers A (2010) The genetics of pituitary adenomas. Best Pract Res Clin Endocrinol Metab 24(3):461–476. doi:S1521-690X(10)00028-X[pii]10.1016/j.beem.2010.03.001

    Article  PubMed  CAS  Google Scholar 

  7. Asa SL, Ezzat S (1998) The cytogenesis and pathogenesis of pituitary adenomas. Endocr Rev 19(6):798–827

    Article  PubMed  CAS  Google Scholar 

  8. Melmed S (2003) Mechanisms for pituitary tumorigenesis: the plastic pituitary. J Clin Invest 112(11):1603–1618. doi:10.1172/JCI20401112/11/1603[pii]

    PubMed  CAS  Google Scholar 

  9. Gejman R, Batista DL, Zhong Y, Zhou Y, Zhang X, Swearingen B, Stratakis CA, Hedley-Whyte ET, Klibanski A (2007) Selective loss of MEG3 expression and intergenic differentially methylated region hypermethylation in the MEG3/DLK1 locus in human clinically nonfunctioning pituitary adenomas. J Clin Endocrinol Metab 93(10):4119–4125. doi:jc.2007-2633[pii]10.1210/jc.2007-2633

    Article  Google Scholar 

  10. Zhao J, Dahle D, Zhou Y, Zhang X, Klibanski A (2005) Hypermethylation of the promoter region is associated with the loss of MEG3 gene expression in human pituitary tumors. J Clin Endocrinol Metab 90(4):2179–2186. doi:jc.2004-1848[pii]10.1210/jc.2004-1848

    Article  PubMed  CAS  Google Scholar 

  11. Bahar A, Bicknell JE, Simpson DJ, Clayton RN, Farrell WE (2001) Loss of expression of the growth inhibitory gene GADD45 gamma, in human pituitary adenomas, is associated with CpG island methylation. Oncogene 23(4):936–944. doi:10.1038/sj.onc.12071931207193[pii]

    Article  Google Scholar 

  12. Baylin SB (2005) DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol 1(2 Suppl):S4–S11. doi:10.1038/ncponc0354[pii]10.1038/ncponc0354

    Article  Google Scholar 

  13. Alexander JM (2001) Tumor suppressor loss in pituitary tumors. Brain Pathol 11(3):342–355

    Article  PubMed  CAS  Google Scholar 

  14. Zhang W, Li T, Shao Y, Zhang C, Wu Q, Yang H, Zhang J, Guan M, Yu B, Wan J (2010) Semi-quantitative detection of GADD45-gamma methylation levels in gastric, colorectal and pancreatic cancers using methylation-sensitive high-resolution melting analysis. J Cancer Res Clin Oncol 136(8):1267–1273. doi:10.1007/s00432-010-0777-z

    Article  PubMed  CAS  Google Scholar 

  15. Farrell WE, Simpson DJ, Frost SJ, Clayton RN (1999) Methylation mechanisms in pituitary tumorigenesis. Endocr Relat Cancer 6(4):437–447

    Article  PubMed  CAS  Google Scholar 

  16. Machiavelli G, Cotignola J, Danilowicz K, Carbonara C, Paes de Lima A, Basso A, Bruno OD, Szijan I (2008) Expression of p16(INK4A) gene in human pituitary tumours. Pituitary 11(1):71–75. doi:10.1007/s11102-007-0077-z

    Article  PubMed  CAS  Google Scholar 

  17. Seemann N, Kuhn D, Wrocklage C, Keyvani K, Hackl W, Buchfelder M, Fahlbusch R, Paulus W (2001) CDKN2A/p16 inactivation is related to pituitary adenoma type and size. J Pathol 193(4):491–497. doi:10.1002/path.833[pii]10.1002/path.833

    Article  PubMed  CAS  Google Scholar 

  18. Zhang X, Sun H, Danila DC, Johnson SR, Zhou Y, Swearingen B, Klibanski A (2002) Loss of expression of GADD45 gamma, a growth inhibitory gene, in human pituitary adenomas: implications for tumorigenesis. J Clin Endocrinol Metab 87(3):1262–1267

    Article  PubMed  CAS  Google Scholar 

  19. Zhang X, Zhou Y, Mehta KR, Danila DC, Scolavino S, Johnson SR, Klibanski A (2003) A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin Endocrinol Metab 88(11):5119–5126

    Article  PubMed  CAS  Google Scholar 

  20. Zhang X, Gejman R, Mahta A, Zhong Y, Rice KA, Zhou Y, Cheunsuchon P, Louis DN, Klibanski A (2010) Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Res 70(6):2350–2358. doi:0008-5472.CAN-09-3885[pii]10.1158/0008-5472.CAN-09-3885

    Article  PubMed  CAS  Google Scholar 

  21. Zhao J, Zhang X, Zhou Y, Ansell PJ, Klibanski A (2006) Cyclic AMP stimulates MEG3 gene expression in cells through a cAMP-response element (CRE) in the MEG3 proximal promoter region. Int J Biochem Cell Biol 38(10):1808–1820. doi:S1357-2725(06)00159-2[pii]10.1016/j.biocel.2006.05.004

    Article  PubMed  CAS  Google Scholar 

  22. Zhou Y, Zhong Y, Wang Y, Zhang X, Batista DL, Gejman R, Ansell PJ, Zhao J, Weng C, Klibanski A (2007) Activation of p53 by MEG3 non-coding RNA. J Biol Chem 282(34):24731–24742. doi:M702029200[pii]10.1074/jbc.M702029200

    Article  PubMed  CAS  Google Scholar 

  23. Zhang X, Zhou Y, Klibanski A (2010) Isolation and characterization of novel pituitary tumor related genes: a cDNA representational difference approach. Mol Cell Endocrinol 326(1–2):40–47. doi:S0303-7207(10)00130-9[pii]10.1016/j.mce.2010.02.040

    Article  PubMed  CAS  Google Scholar 

  24. Takekawa M, Saito H (1998) A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell 95(4):521–530. doi:S0092-8674(00)81619-0[pii]

    Article  PubMed  CAS  Google Scholar 

  25. Zhang W, Bae I, Krishnaraju K, Azam N, Fan W, Smith K, Hoffman B, Liebermann DA (1999) CR6: A third member in the MyD118 and Gadd45 gene family which functions in negative growth control. Oncogene 18(35):4899–4907. doi:10.1038/sj.onc.1202885

    Article  PubMed  CAS  Google Scholar 

  26. Ying J, Srivastava G, Hsieh WS, Gao Z, Murray P, Liao SK, Ambinder R, Tao Q (2005) The stress-responsive gene GADD45G is a functional tumor suppressor, with its response to environmental stresses frequently disrupted epigenetically in multiple tumors. Clin Cancer Res 11(18):6442–6449. doi:11/18/6442[pii]10.1158/1078-0432.CCR-05-0267

    Article  PubMed  CAS  Google Scholar 

  27. Wang XW, Zhan Q, Coursen JD, Khan MA, Kontny HU, Yu L, Hollander MC, O’Connor PM, Fornace AJ Jr, Harris CC (1999) GADD45 induction of a G2/M cell cycle checkpoint. Proc Natl Acad Sci USA 96(7):3706–3711

    Article  PubMed  CAS  Google Scholar 

  28. Vairapandi M, Balliet AG, Hoffman B, Liebermann DA (2002) GADD45b and GADD45g are cdc2/cyclinB1 kinase inhibitors with a role in S and G2/M cell cycle checkpoints induced by genotoxic stress. J Cell Physiol 192(3):327–338. doi:10.1002/jcp.10140

    Article  PubMed  CAS  Google Scholar 

  29. Cretu A, Sha X, Tront J, Hoffman B, Liebermann DA (2009) Stress sensor Gadd45 genes as therapeutic targets in cancer. Cancer Ther 7(A):268–276

    PubMed  CAS  Google Scholar 

  30. Chomczynski P (1993) A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 15(3): 532–534, 536–537

    Google Scholar 

  31. Quereda V, Malumbres M (2009) Cell cycle control of pituitary development and disease. J Mol Endocrinol 42(2):75–86. doi:JME-08-0146[pii]10.1677/JME-08-0146

    Article  PubMed  CAS  Google Scholar 

  32. Melmed S (2011) Pathogenesis of pituitary tumors. Nat Rev Endocrinol 7(5):257–266. doi:nrendo.2011.40[pii]10.1038/nrendo.2011.40

    Article  PubMed  CAS  Google Scholar 

  33. Chesnokova V, Melmed S (2010) Pituitary senescence: the evolving role of Pttg. Mol Cell Endocrinol 326(1–2):55–59. doi:S0303-7207(10)00070-5[pii]10.1016/j.mce.2010.02.012

    Article  PubMed  CAS  Google Scholar 

  34. Miyoshi N, Wagatsuma H, Wakana S, Shiroishi T, Nomura M, Aisaka K, Kohda T, Surani MA, Kaneko-Ishino T, Ishino F (2000) Identification of an imprinted gene, Meg3/Gtl2 and its human homologue MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q. Genes Cells 5(3):211–220. doi:gtc320[pii]

    Article  PubMed  CAS  Google Scholar 

  35. De Cesare D, Sassone-Corsi P (2000) Transcriptional regulation by cyclic AMP-responsive factors. Prog Nucleic Acid Res Mol Biol 64:343–369

    Article  PubMed  Google Scholar 

  36. Boikos SA, Stratakis CA (2007) Molecular genetics of the cAMP-dependent protein kinase pathway and of sporadic pituitary tumorigenesis. Hum Mol Genet 16(Spec No 1):R80–R87. doi:16/R1/R80[pii]10.1093/hmg/ddm019

    Article  PubMed  CAS  Google Scholar 

  37. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408(6810):307–310. doi:10.1038/35042675

    Article  PubMed  CAS  Google Scholar 

  38. Carrier F, Georgel PT, Pourquier P, Blake M, Kontny HU, Antinore MJ, Gariboldi M, Myers TG, Weinstein JN, Pommier Y, Fornace AJ Jr (1999) Gadd45, a p53-responsive stress protein, modifies DNA accessibility on damaged chromatin. Mol Cell Biol 19(3):1673–1685

    PubMed  CAS  Google Scholar 

  39. Carrier F, Smith ML, Bae I, Kilpatrick KE, Lansing TJ, Chen CY, Engelstein M, Friend SH, Henner WD, Gilmer TM et al (1994) Characterization of human Gadd45, a p53-regulated protein. J Biol Chem 269(51):32672–32677

    PubMed  CAS  Google Scholar 

  40. Zhan Q, Lord KA, Alamo I Jr, Hollander MC, Carrier F, Ron D, Kohn KW, Hoffman B, Liebermann DA, Fornace AJ Jr (1994) The gadd and MyD genes define a novel set of mammalian genes encoding acidic proteins that synergistically suppress cell growth. Mol Cell Biol 14(4):2361–2371

    Article  PubMed  CAS  Google Scholar 

  41. Bustin SA, Mueller R (2005) Real-time reverse transcription PCR (qRT-PCR) and its potential use in clinical diagnosis. Clin Sci (Lond) 109(4):365–379. doi:CS20050086[pii]10.1042/CS20050086

    Article  CAS  Google Scholar 

  42. Ezzat S (2001) The role of hormones, growth factors and their receptors in pituitary tumorigenesis. Brain Pathol 11(3):356–370

    Article  PubMed  CAS  Google Scholar 

  43. Buurman H, Saeger W (2006) Subclinical adenomas in postmortem pituitaries: classification and correlations to clinical data. Eur J Endocrinol 154(5):753–758. doi:154/5/753[pii]10.1530/eje.1.02107

    Article  PubMed  CAS  Google Scholar 

  44. McDowell BD, Wallace RB, Carnahan RM, Chrischilles EA, Lynch CF, Schlechte JA (2011) Demographic differences in incidence for pituitary adenoma. Pituitary 14(1):23–30. doi:10.1007/s11102-010-0253-4

    Article  PubMed  Google Scholar 

  45. Daly AF, Tichomirowa MA, Beckers A (2009) The epidemiology and genetics of pituitary adenomas. Best Pract Res Clin Endocrinol Metab 23(5):543–554. doi:S1521-690X(09)00056-6[pii]10.1016/j.beem.2009.05.008

    Article  PubMed  CAS  Google Scholar 

  46. Taboada GF, Tabet AL, Naves LA, de Carvalho DP, Gadelha MR (2009) Prevalence of gsp oncogene in somatotropinomas and clinically non-functioning pituitary adenomas: our experience. Pituitary 12(3):165–169. doi:10.1007/s11102-008-0136-0

    Article  PubMed  CAS  Google Scholar 

  47. Kalebic T (2003) Epigenetic changes: potential therapeutic targets. Ann NY Acad Sci 983:278–285

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Neuroendocrinology Center of Hospital São José, Irmandade Santa Casa de Misericórdia de Porto Alegre, Brazil, for providing the human pituitary tissues. This work was supported by CAPES (Coordenação de aperfeiçoamento de pessoal de nível superior), Ministry of Education, Brazil and UFCSPA (Universidade Federal de Ciências da Saúde de Porto Alegre), Porto Alegre, Brazil.

Conflict of interest

The authors have nothing to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Beatriz Fonte Kohek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mezzomo, L.C., Gonzales, P.H., Pesce, F.G. et al. Expression of cell growth negative regulators MEG3 and GADD45γ is lost in most sporadic human pituitary adenomas. Pituitary 15, 420–427 (2012). https://doi.org/10.1007/s11102-011-0340-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-011-0340-1

Keywords

Navigation