Skip to main content
Log in

What are critical outcome measures for patients receiving pituitary replacement following brain injury?

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

There are scant prospective studies defining improvements in critical outcome measures with hormone replacement in hypopituitarism secondary to brain injury. We review the tests of cognition and physical function and summarize their use for subjects that are deficient in anterior hormone production during anterior pituitary hormone replacement in brain injury and propose these as the minimal tests that are feasible for a physician to perform in a clinical setting. We summarize the studies conducted to assess outcome measures after brain injury and also report preliminary findings for improvements in cognition and physical function in subjects with brain injury and GH deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleman A, Verhaar HJJ, de Haan EHF et al (1999) Insulin-like growth factor-I and cognitive function in healthy older men. J Clin Endocrinol Metab 84:471–475. doi:10.1210/jc.84.2.471

    Article  PubMed  CAS  Google Scholar 

  2. Creyghton WM, van Dam PS, Koppeschaar HP (2004) The role of the somatotropic system in cognition and other cerebral functions. Semin Vasc Med 4:167–172. doi:10.1055/s-2004-835375

    Article  PubMed  Google Scholar 

  3. Maruff P, Falleti M (2005) Cognitive function in growth hormone deficiency and growth hormone replacement. Horm Res 64:100–108. doi:10.1159/000089325

    Article  PubMed  CAS  Google Scholar 

  4. Arwert LI, Deijen JB, Drent ML (2005) Effects of growth hormone deficiency and growth hormone treatment on quality of life in growth hormone-deficient adults. Front Horm Res 33:196–208

    Article  PubMed  CAS  Google Scholar 

  5. Arwert LI, Veltman DJ, Deijen JB, van Dam PS, Delemarre-van deWaal HA, Drent ML (2005) Growth hormone deficiency and memory functioning in adults visualized by functional magnetic resonance imaging. Neuroendocrinology 82:32–40. doi:10.1159/000090123

    Article  PubMed  CAS  Google Scholar 

  6. Oertel H, Schneider HJ, Stalla GK, Holsboer F, Zihl J (2004) The effect of growth hormone substitution on cognitive performance in adult patients with hypopituitarism. Psychoneuroendocrinology 29:839–850. doi:10.1016/S0306-4530(03)00151-3

    Article  PubMed  CAS  Google Scholar 

  7. Lasaite L, Bunevicius R, Lasiene D, Lasas L (2004) Psychological functioning after growth hormone therapy in adult growth hormone deficient patients: endocrine and body composition correlates. Medicina (Kaunas) 40:740–744

    Google Scholar 

  8. Leon-Carrion J, Leal-Cerro A, Cabezas FM et al (2007) Cognitive deterioration due to gh deficiency in patients with traumatic brain injury: a preliminary report. Brain Inj 21:871–875. doi:10.1080/02699050701484849

    Article  PubMed  CAS  Google Scholar 

  9. Benvenga S, Campenni A, Ruggeri RM, Trimarchi F (2000) Clinical review 113: hypopituitarism secondary to head trauma. J Clin Endocrinol Metab 85:1353–1361. doi:10.1210/jc.85.4.1353

    Article  PubMed  CAS  Google Scholar 

  10. Benvenga S, Vigo T, Ruggeri RM, Lapa D, Almoto B, LoGiudice F, Longo M, Blandino A, Campenni A, Cannavo S, Trimarchi F (2004) Severe head trauma in patients with unexplained central hypothyroidism. Am J Med 116(11):767–771

    Article  PubMed  Google Scholar 

  11. Aimaretti G, Ambrosio MR, Di Somma C et al (2004) Traumatic brain injury and subarachnoid haemorrhage are conditions at high risk for hypopituitarism: screening study at 3 months after the brain injury. Clin Endocrinol (Oxf) 61:320–326. doi:10.1111/j.1365-2265.2004.02094.x

    Article  CAS  Google Scholar 

  12. Aimaretti G, Ambrosio MR, Di Somma C et al (2005) Residual pituitary function after brain injury-induced hypopituitarism: a prospective 12-month study. J Clin Endocrinol Metab 90:6085–6092. doi:10.1210/jc.2005-0504

    Article  PubMed  CAS  Google Scholar 

  13. Slawik M, Klawitter B, Meiser E et al (2007) Thyroid hormone replacement for central hypothyroidism: a randomized controlled trial comparing two doses of thyroxine (T4) with a combination of T4 and triiodothyronine. J Clin Endocrinol Metab 92:4115–4122. doi:10.1210/jc.2007-0297

    Article  PubMed  CAS  Google Scholar 

  14. Miller KJ, Parsons TD, Whybrow PC et al (2006) Memory improvement with treatment of hypothyroidism. Int J Neurosci 116:895–906. doi:10.1080/00207450600550154

    Article  PubMed  CAS  Google Scholar 

  15. Walsh JP, Shiels L, Lim EM et al (2003) Combined thyroxine/liothyronine treatment does not improve well-being, quality of life, or cognitive function compared to thyroxine alone: a randomized controlled trial in patients with primary hypothyroidism. J Clin Endocrinol Metab 88:4543–4550. doi:10.1210/jc.2003-030249

    Article  PubMed  CAS  Google Scholar 

  16. Wekking EM, Appelhof BC, Fliers E et al (2005) Cognitive functioning and well-being in euthyroid patients on thyroxine replacement therapy for primary hypothyroidism. Eur J Endocrinol 153:747–753. doi:10.1530/eje.1.02025

    Article  PubMed  CAS  Google Scholar 

  17. Morley JE, Kaiser F, Raum WJ, Perry HM III, Flood JF, Jensen J, Silver AJ, Roberts E (1997) Potentially predictive and manipulable blood serum correlates of aging in the healthy human male: progressive decreases in bioavailable testosterone, dehydroepiandrosterone sulfate, and the ratio of insulin-like growth factor 1 to growth hormone. Proc Natl Acad Sci USA 94(14):7537–7542

    Article  PubMed  CAS  Google Scholar 

  18. Beauchet O (2006) Testosterone and cognitive function: current clinical evidence of a relationship. Eur J Endocrinol 155:773–781. doi:10.1530/eje.1.02306

    Article  PubMed  CAS  Google Scholar 

  19. Gouras GK, Xu H, Gross RS, Greenfield JP, Hai B, Wang R, Greengard P (2000) Testosterone reduces neuronal secretion of Alzheimer’s beta-amyloid peptides. Proc Natl Acad Sci USA 97(3):1202–1205

    Article  PubMed  CAS  Google Scholar 

  20. Papasozomenos SC, Shanavas A (2002) Testosterone prevents the heat shock-induced overactivation of glycogen synthase kinase-3 beta but not of cyclin-dependent kinase 5 and c-jun nh2-terminal kinase and concomitantly abolishes hyperphosphorylation of tau: implications for alzheimer’s disease. Proc Natl Acad Sci USA 99(3):1140–1145

    Article  PubMed  CAS  Google Scholar 

  21. Salminen EK, Portin RI, Koskinen A, Helenius H, Nurmi M (2004) Associations between serum testosterone fall and cognitive function in prostate cancer patients. Clin Cancer Res 10(22):7575–7582

    Article  PubMed  CAS  Google Scholar 

  22. Almeida OP, Waterreus A, Spry N, Flicker L, Martins RN (2004) One year follow-up study of the association between chemical castration, sex hormones, beta-amyloid, memory and depression in men. Psychoneuroendocrinology 29:1071–1081. doi:10.1016/j.psyneuen.2003.11.002

    Article  PubMed  CAS  Google Scholar 

  23. Cherrier MM, Rose AL, Higano C (2003) The effects of combined androgen blockade on cognitive function during the first cycle of intermittent androgen suppression in patients with prostate cancer. J Urol 170:1808–1811. doi:10.1097/01.ju.0000091640.59812.83

    Article  PubMed  CAS  Google Scholar 

  24. Loizides E, Swierzewski MJ, O’neill C, Griesser J, Smith T (2004) Early response time in sexual activity and mood following testosterone gel replacement in hypogonadal males from the testim(R) START study. Rev Urol 6(Suppl 6):S16–S21

    PubMed  Google Scholar 

  25. Amore M (2005) Partial androgen deficiency and neuropsychiatric symptoms in aging men. J Endocrinol Invest 28(11 Suppl Proceedings):49–54

    PubMed  CAS  Google Scholar 

  26. Janowsky JS, Chavez B, Orwoll E (2000) Sex steroids modify working memory. J Cogn Neurosci 12:407–414. doi:10.1162/089892900562228

    Article  PubMed  CAS  Google Scholar 

  27. Cherrier MM, Asthana S, Plymate S, Baker L, Matsumoto AM, Peskind E, Raskind MA, Brodkin K, Bremner W, Petrova A, Latendresse S, Craft S (2001) Testosterone supplementation improves spatial and verbal memory in healthy older men. Neurology 57(1):80–88

    PubMed  CAS  Google Scholar 

  28. Cherrier MM, Matsumoto AM, Amory JK, Ahmed S, Bremner W, Peskind ER, Raskind MA, Johnson M, Craft S (2005) The role of aromatization in testosterone supplementation: effects on cognition in older men. Neurology 64(2):290–296

    Article  PubMed  CAS  Google Scholar 

  29. Moffat SD, Zonderman AB, Metter EJ, Kawas C, Blackman MR, Harman SM, Resnick SM (2004) Free testosterone and risk for Alzheimer disease in older men. Neurology 62(2):188–193

    PubMed  CAS  Google Scholar 

  30. Abbasi AA, Drinka PJ, Mattson DE, Rudman D (1993) Low circulating levels of insulin-like growth factors and testosterone in chronically institutionalized elderly men. J Am Geriatr Soc 41:975–982

    PubMed  CAS  Google Scholar 

  31. Bowen RL, Isley JP, Atkinson RL (2000) An association of elevated serum gonadotropin concentrations and Alzheimer disease? J Neuroendocrinol 12:351–354. doi:10.1046/j.1365-2826.2000.00461.x

    Article  PubMed  CAS  Google Scholar 

  32. Hogervorst E, Bandelow S, Combrinck M, Smith AD (2004) Low free testosterone is an independent risk factor for Alzheimer’s disease. Exp Gerontol 39:1633–1639. doi:10.1016/j.exger.2004.06.019

    Article  PubMed  CAS  Google Scholar 

  33. Hogervorst E, Bandelow S, Moffat SD (2005) Increasing testosterone levels and effects on cognitive functions in elderly men and women: a review. Curr Drug Targets CNS Neurol Disord 4:531–540

    Article  PubMed  CAS  Google Scholar 

  34. Janowsky JS, Oviatt SK, Orwoll ES (1994) Testosterone influences spatial cognition in older men. Behav Neurosci 108:325–332. doi:10.1037/0735-7044.108.2.325

    Article  PubMed  CAS  Google Scholar 

  35. Young TP, Hoaglin HM, Burke DT (2007) The role of serum testosterone and TBI in the in-patient rehabilitation setting. Brain Inj 21:645–649. doi:10.1080/02699050701210426

    Article  PubMed  Google Scholar 

  36. Mattsson S, Thomas BJ (2006) Development of methods for body composition studies. Phys Med Biol 51(13):R203–R228

    Article  PubMed  CAS  Google Scholar 

  37. Behn A, Ur E (2006) The obesity epidemic and its cardiovascular consequences. Curr Opin Cardiol 21:353–360. doi:10.1097/01.hco.0000231406.84554.96

    Article  PubMed  Google Scholar 

  38. Mukherjee A, Murray RD, Shalet SM (2004) Impact of growth hormone status on body composition and the skeleton. Horm Res 62(Suppl 3):35–41. doi:10.1159/000080497

    Article  PubMed  CAS  Google Scholar 

  39. Rosen T, Wilhelmsen L, Landin-Wilhelmsen K, Lappas G, Bengtsson BA (1997) Increased fracture frequency in adult patients with hypopituitarism and GH deficiency. Eur J Endocrinol 137:240–245. doi:10.1530/eje.0.1370240

    Article  PubMed  CAS  Google Scholar 

  40. Satz P, Forney DL, Zaucha K et al (1998) Depression, cognition, and functional correlates of recovery outcome after traumatic brain injury. Brain Inj 12:537–553. doi:10.1080/026990598122313

    Article  PubMed  CAS  Google Scholar 

  41. Pohl PS, Startzell JK, Duncan PW, Wallace D (2000) Reliability of lower extremity isokinetic strength testing in adults with stroke. Clin Rehabil 14:601–607. doi:10.1191/0269215500cr367oa

    Article  PubMed  CAS  Google Scholar 

  42. Riddle DL, Finucane SD, Rothstein JM, Walker ML (1989) Intrasession and intersession reliability of hand-held dynamometer measurements taken on brain-damaged patients. Phys Ther 69:182–194

    PubMed  CAS  Google Scholar 

  43. Bohannon RW (2001) Dynamometer measurements of hand-grip strength predict multiple outcomes. Percept Mot Skills 93:323–328

    PubMed  CAS  Google Scholar 

  44. Hunter M, Tomberlin J, Kirkikis C, Kuna ST (1990) Progressive exercise testing in closed head-injured subjects: comparison of exercise apparatus in assessment of a physical conditioning program. Phys Ther 70:363–371

    PubMed  CAS  Google Scholar 

  45. Mossberg KA, Greene BP (2005) Reliability of graded exercise testing after traumatic brain injury. Submaximal and peak responses. Am J Phys Med Rehabil 84:492–500

    Article  PubMed  Google Scholar 

  46. Woodhouse LJ, Asa SL, Thomas SG, Ezzat S (1999) Measures of submaximal aerobic performance evaluate and predict functional response to growth hormone (GH) treatment in GH-deficient adults. J Clin Endocrinol Metab 84:4570–4577. doi:10.1210/jc.84.12.4570

    Article  PubMed  CAS  Google Scholar 

  47. Cooper KH (1968) A means of assessing maximal oxygen intake. Correlation between field and treadmill testing. JAMA 203(3):201–204

    Article  PubMed  CAS  Google Scholar 

  48. Butland RJ, Pang J, Gross ER, Woodcock AA, Geddes DM (1982) Two-, Six-, and 12-minute walking tests in respiratory disease. Br Med J (Clin Res Ed) 284(6329):1607–1608

    Article  CAS  Google Scholar 

  49. Guyatt GH, Sullivan MJ, Thompson PJ, Fallen EL, Pugsley SO, Taylor DW, Berman LB (1985) The 6-minute walk: a new measure of exercise capacity in patients with chronic heart failure. Can Med Assoc J 132(8):919–923

    PubMed  CAS  Google Scholar 

  50. Berg K (1971) Heart-rate telemetry for evaluation of the energy expenditure of children with cerebral palsy. Am J Clin Nutr 24:1438–1445

    PubMed  CAS  Google Scholar 

  51. MacGregor J (1981) The evaluation of patient performance using long-term ambulatory monitoring technique in the domiciliary environment. Physiotherapy 67(2):30–33

    PubMed  CAS  Google Scholar 

  52. Zugck C, Kruger C, Durr S et al (2000) Is the 6-minute walk test a reliable substitute for peak oxygen uptake in patients with dilated cardiomyopathy? Eur Heart J 21:540–549. doi:10.1053/euhj.1999.1861

    Article  PubMed  CAS  Google Scholar 

  53. King S, Wessel J, Bhambhani Y, Maikala R, Sholter D, Maksymowych W (1999) Validity and reliability of the 6 minute walk in persons with fibromyalgia. J Rheumatol 26:2233–2237

    PubMed  CAS  Google Scholar 

  54. Mossberg KA (2003) Reliability of a timed walk test in persons with acquired brain injury. Am J Phys Med Rehabil 82:385–390. doi:10.1097/00002060-200305000-00014

    PubMed  Google Scholar 

  55. Woodhouse LJ, Mukherjee A, Shalet SM, Ezzat S (2006) The influence of growth hormone status on physical impairments, functional limitations, and health-related quality of life in adults. Endocr Rev 27:287–317. doi:10.1210/er.2004-0022

    Article  PubMed  CAS  Google Scholar 

  56. Bushnik T, Englander J, Katznelson L (2007) Fatigue after TBI. Association with neuroendocrine abnormalities. Brain Inj 21:559–566

    Article  PubMed  Google Scholar 

  57. Caiozzo VJ, Davis JA, Ellis JF et al (1982) A comparison of gas exchange indices used to detect the anaerobic threshold. J Appl Physiol 53:1184–1189

    PubMed  CAS  Google Scholar 

  58. Ohuchi H, Nakajima T, Kawade M, Matsuda M, Kamiya T (1996) Measurement and validity of the ventilatory threshold in patients with congenital heart disease. Pediatr Cardiol 17:7–14. doi:10.1007/BF02505805

    Article  PubMed  CAS  Google Scholar 

  59. Moritani T, Nagata A, deVries HA, Muro M (1981) Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics 24:339–350. doi:10.1080/00140138108924856

    Article  PubMed  CAS  Google Scholar 

  60. Bhasin S, Storer TW, Berman N, Callegari C, Clevenger B, Phillips J, Bunnell TJ, Tricker R, Shirazi A, Casaburi R (1996) The effects of supraphysiologic doses of testosterone on muscle size and strength in normal men. N Engl J Med 335(1):1–7

    Article  PubMed  CAS  Google Scholar 

  61. Sheffield-Moore M, Urban RJ, Wolf SE et al (1999) Short-term oxandrolone administration stimulates net muscle protein synthesis in young men. J Clin Endocrinol Metab 84:2705–2711. doi:10.1210/jc.84.8.2705

    Article  PubMed  CAS  Google Scholar 

  62. Snyder PJ, Peachey H, Hannoush P et al (1999) Effect of testosterone treatment on body composition and muscle strength in men over 65 years of age. J Clin Endocrinol Metab 84:2647–2653. doi:10.1210/jc.84.8.2647

    Article  PubMed  CAS  Google Scholar 

  63. Urban RJ, Bodenburg YH, Gilkison C et al (1995) Testosterone administration to elderly men increases skeletal muscle strength and protein synthesis. Am J Physiol 269:E820–E826

    PubMed  CAS  Google Scholar 

  64. Wang C, Swerdloff RS, Iranmanesh A et al (2000) Transdermal testosterone gel improves sexual function, mood, muscle strength, and body composition parameters in hypogonadal men. J Clin Endocrinol Metab 85:2839–2853. doi:10.1210/jc.85.8.2839

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall J. Urban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beca, S.G., High, W.M., Masel, B.E. et al. What are critical outcome measures for patients receiving pituitary replacement following brain injury?. Pituitary 15, 10–19 (2012). https://doi.org/10.1007/s11102-008-0133-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-008-0133-3

Keywords

Navigation