Skip to main content

Advertisement

Log in

Review of physiology, clinical manifestations, and management of hypothalamic obesity in humans

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Hypothalamic injury from acquired structural damage due to infiltrative disease, tumor, or their treatment aftereffects frequently results in the development of an obesity syndrome characterized by a rapid, unrelenting weight gain that may be accompanied by severe hyperphagia. Weight gain occurs from the disruption of the normal homeostatic functioning of the hypothalamic centers responsible for controlling satiety and hunger and regulating energy balance with resulting hyperphagia, autonomic imbalance, reduction of energy expenditure, and hyperinsulinemia. Curtailment of weight increase has traditionally been refractory to usual dietary and lifestyle interventions. Pharmacotherapy targeting insulin secretion and augmenting sympathetic output have been attempted to promote weight loss or attenuate weight gain. In addition, case reports suggest that bariatric surgery may be an effective treatment option for these patients. Hormonal deficits are often present, and their management may also have consequences for weight control. Hypothalamic obesity confers significant morbidity and mortality, and there is a need for greater elucidation of its risk factors and pathogenesis so that more effective interventions can be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hetherington A, Ranson S (1940) Hypothalamic lesions and adiposity in the rat. Anat Rec 78:149–172. doi:10.1002/ar.1090780203

    Google Scholar 

  2. Elmquist JK, Elias CF, Saper CB (1999) From lesions to leptin: hypothalamic control of food intake and body weight. Neuron 22:221–232 Medline. doi:10.1016/S0896-6273(00)81084-3

    Google Scholar 

  3. Bray GA (1993) Commentary on classics of obesity. 4. Hypothalamic obesity. Obes Res 1:325–328 Medline

    PubMed  CAS  Google Scholar 

  4. Bruch H (1993) The Frohlich syndrome: report of the original case. 1939. Obes Res 1:329–331 Medline

    PubMed  CAS  Google Scholar 

  5. Bray GA, Gallagher TF Jr (1975) Manifestations of hypothalamic obesity in man: a comprehensive investigation of eight patients and a reveiw of the literature. Medicine (Baltimore) 54:301–330 Medline. doi:10.1097/00005792-197507000-00002

  6. Bray GA (1984) Syndromes of hypothalamic obesity in man. Pediatr Ann 13:525–536 Medline

    PubMed  CAS  Google Scholar 

  7. Farooqi S, O’Rahilly S (2006) Genetics of obesity in humans. Endocr Rev 27:710–718 Medline

    PubMed  CAS  Google Scholar 

  8. Kim SF, Huang AS, Snowman AM, Teuscher C, Snyder SH (2007) From the cover: antipsychotic drug-induced weight gain mediated by histamine H1 receptor-linked activation of hypothalamic AMP-kinase. Proc Natl Acad Sci USA 104:3456–3459 Medline. doi:10.1073/pnas.0611417104

    Google Scholar 

  9. Swaab DF, Purba JS, Hofman MA (1995) Alterations in the hypothalamic paraventricular nucleus and its oxytocin neurons (putative satiety cells) in Prader-Willi syndrome: a study of five cases. J Clin Endocrinol Metab 80:573–579 Medline. doi:10.1210/jc.80.2.573

    Google Scholar 

  10. Swaab DF (1997) Prader-Willi syndrome and the hypothalamus. Acta Paediatr Suppl 423:50–54 Medline

    PubMed  CAS  Google Scholar 

  11. Anand BK, Brobeck JR (1951) Localization of a “feeding center” in the hypothalamus of the rat. Proc Soc Exp Biol Med 77:323–324 Medline

    PubMed  CAS  Google Scholar 

  12. King BM (2006) The rise, fall, and resurrection of the ventromedial hypothalamus in the regulation of feeding behavior and body weight. Physiol Behav 87:221–244 Medline. doi:10.1016/j.physbeh.2005.10.007

  13. Lee M, Wardlaw SL (2007) The central melanocortin system and the regulation of energy balance. Front Biosci 12:3994–4010 Medline. doi:10.2741/2366

    Google Scholar 

  14. Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404:661–671 Medline

    PubMed  CAS  Google Scholar 

  15. Cone RD (2005) Anatomy and regulation of the central melanocortin system. Nat Neurosci 8:571–578 Medline. doi:10.1038/nn1455

    Google Scholar 

  16. Roth C, Wilken B, Hanefeld F, Schroter W, Leonhardt U (1998) Hyperphagia in children with craniopharyngioma is associated with hyperleptinaemia and a failure in the downregulation of appetite. Eur J Endocrinol 138:89–91 Medline. doi:10.1530/eje.0.1380089

    Google Scholar 

  17. Korner J, Leibel RL (2003) To eat or not to eat—how the gut talks to the brain. N Engl J Med 349:926–928 Medline. doi:10.1056/NEJMp038114

    Google Scholar 

  18. Murphy KG, Bloom SR (2006) Gut hormones and the regulation of energy homeostasis. Nature 444:854–859 Medline. doi:10.1038/nature05484

    Google Scholar 

  19. Cummings DE, Clement K, Purnell JQ et al (2002) Elevated plasma ghrelin levels in Prader Willi syndrome. Nat Med 8:643–644 Medline. doi:10.1038/nm0702-643

    Google Scholar 

  20. Tauber M, Conte Auriol F, Moulin P, Molinas C, Delagnes V, Salles JP (2004) Hyperghrelinemia is a common feature of Prader-Willi syndrome and pituitary stalk interruption: a pathophysiological hypothesis. Horm Res 62:49–54 Medline. doi:10.1159/000078862

    Google Scholar 

  21. Haqq AM, Farooqi IS, O’Rahilly S et al (2003) Serum ghrelin levels are inversely correlated with body mass index, age, and insulin concentrations in normal children and are markedly increased in Prader-Willi syndrome. J Clin Endocrinol Metab 88:174–178 Medline. doi:10.1210/jc.2002-021052

    Google Scholar 

  22. Goldstone AP, Thomas EL, Brynes AE et al (2004) Elevated fasting plasma ghrelin in Prader-Willi syndrome adults is not solely explained by their reduced visceral adiposity and insulin resistance. J Clin Endocrinol Metab 89:1718–1726 Medline. doi:10.1210/jc.2003-031118

    Google Scholar 

  23. DelParigi A, Tschop M, Heiman ML et al (2002) High circulating ghrelin: a potential cause for hyperphagia and obesity in Prader-Willi syndrome. J Clin Endocrinol Metab 87:5461–5464 Medline. doi:10.1210/jc.2002-020871

    Google Scholar 

  24. Goldstone AP, Patterson M, Kalingag N et al (2005) Fasting and postprandial hyperghrelinemia in Prader-Willi syndrome is partially explained by hypoinsulinemia, and is not due to peptide YY3–36 deficiency or seen in hypothalamic obesity due to craniopharyngioma. J Clin Endocrinol Metab 90:2681–2690 Medline. doi:10.1210/jc.2003-032209

    Google Scholar 

  25. Kanumakala S, Greaves R, Pedreira CC et al (2005) Fasting ghrelin levels are not elevated in children with hypothalamic obesity. J Clin Endocrinol Metab 90:2691–2695 Medline. doi:10.1210/jc.2004-2175

    Google Scholar 

  26. Daousi C, MacFarlane IA, English PJ et al (2005) Is there a role for ghrelin and peptide-YY in the pathogenesis of obesity in adults with acquired structural hypothalamic damage? J Clin Endocrinol Metab 90:5025–5030 Medline. doi:10.1210/jc.2004-1874

    Google Scholar 

  27. Martin JM, Konijnendijk W, Bouman PR (1974) Insulin and growth hormone secretion in rats with ventromedial hypothalamic lesions maintained on restricted food intake. Diabetes 23:203–208 Medline

    PubMed  CAS  Google Scholar 

  28. Hustvedt BE, Lovo A (1972) Correlation between hyperinsulinemia and hyperphagia in rats with ventromedial hypothalamic lesions. Acta Physiol Scand 84:29–33 Medline

    Article  PubMed  CAS  Google Scholar 

  29. Rohner FDA, Karakash C, Le Marchand Y, Ruf KB, Jeanrenaud B (1977) Immediate effect of lesion of the ventromedial hypothalamic area upon glucose-induced insulin secretion in anaesthetized rats. Diabetalogia 13:239–242. doi:10.1007/BF01219706

    Google Scholar 

  30. Cox JE, Powley TL (1981) Intragastric pair feeding fails to prevent VMH obesity or hyperinsulinemia. Am J Physiol 240:E566–E572 Medline

    PubMed  CAS  Google Scholar 

  31. Balkan B, Steffens AB, Bruggink JE, Strubbe JH (1991) Hyperinsulinemia and glucose tolerance in obese rats with lesions of the ventromedial hypothalamus: dependence on food intake and route of administration. Metabolism 40:1092–1100 Medline. doi:10.1016/0026-0495(91)90136-K

    Google Scholar 

  32. Bray GA, Inoue S, Nishizawa Y (1981) Hypothalamic obesity. The autonomic hypothesis and the lateral hypothalamus. Diabetologia 20(Suppl):366–377 Medline. doi:10.1007/BF00254505

    Google Scholar 

  33. Bray GA, York DA (1979) Hypothalamic and genetic obesity in experimental animals: an autonomic and endocrine hypothesis. Physiol Rev 59:719–809 Medline

    PubMed  CAS  Google Scholar 

  34. Lustig RH (2003) Autonomic dysfunction of the beta-cell and the pathogenesis of obesity. Rev Endocr Metab Disord 4:23–32 Medline. doi:10.1023/A:1021819318484

    Google Scholar 

  35. Tokunaga K, Fukushima M, Kemnitz JW, Bray GA (1986) Effect of vagotomy on serum insulin in rats with paraventricular or ventromedial hypothalamic lesions. Endocrinology 119:1708–1711 Medline

    PubMed  CAS  Google Scholar 

  36. Cox JE, Powley TL (1981) Prior vagotomy blocks VMH obesity in pair-fed rats. Am J Physiol 240:E573–E583 Medline

    PubMed  CAS  Google Scholar 

  37. Inoue S, Bray GA (1977) The effects of subdiaphragmatic vagotomy in rats with ventromedial hypothalamic obesity. Endocrinology 100:108–114 Medline

    Article  PubMed  CAS  Google Scholar 

  38. Berthoud HR, Jeanrenaud B (1979) Acute hyperinsulinemia and its reversal by vagotomy after lesions of the ventromedial hypothalamus in anesthetized rats. Endocrinology 105:146–151 Medline

    PubMed  CAS  Google Scholar 

  39. Harz KJ, Muller HL, Waldeck E, Pudel V, Roth C (2003) Obesity in patients with craniopharyngioma: assessment of food intake and movement counts indicating physical activity. J Clin Endocrinol Metab 88:5227–5231 Medline. doi:10.1210/jc.2002-021797

    Google Scholar 

  40. Schofl C, Schleth A, Berger D, Terkamp C, von zur Muhlen A, Brabant G (2002) Sympathoadrenal counterregulation in patients with hypothalamic craniopharyngioma. J Clin Endocrinol Metab 87:624–629 Medline. doi:10.1210/jc.87.2.624

    Google Scholar 

  41. Coutant R, Maurey H, Rouleau S et al (2003) Defect in epinephrine production in children with craniopharyngioma: functional or organic origin? J Clin Endocrinol Metab 88:5969–5975 Medline. doi:10.1210/jc.2003-030552

    Google Scholar 

  42. Fery F, Plat L, van de Borne P, Cogan E, Mockel J (1999) Impaired counterregulation of glucose in a patient with hypothalamic sarcoidosis. N Engl J Med 340:852–856 Medline. doi:10.1056/NEJM199903183401105

    Google Scholar 

  43. Roth CL, Hunneman DH, Gebhardt U, Stoffel-Wagner B, Reinehr T, Muller HL (2007) Reduced sympathetic metabolites in urine of obese patients with craniopharyngioma. Pediatr Res 61:496–501 Medline. doi:10.1203/pdr.0b013e3180332cd6

    Google Scholar 

  44. Smith DK, Sarfeh J, Howard L (1983) Truncal vagotomy in hypothalamic obesity. Lancet 1:1330–1331 Medline. doi:10.1016/S0140-6736(83)92437-6

    Google Scholar 

  45. Lustig RH, Rose SR, Burghen GA et al (1999) Hypothalamic obesity caused by cranial insult in children: altered glucose and insulin dynamics and reversal by a somatostatin agonist. J Pediatr 135:162–168 Medline. doi:10.1016/S0022-3476(99)70017-X

    Google Scholar 

  46. Lustig RH, Hinds PS, Ringwald-Smith K et al (2003) Octreotide therapy of pediatric hypothalamic obesity: a double-blind, placebo-controlled trial. J Clin Endocrinol Metab 88:2586–2592 Medline. doi:10.1210/jc.2002-030003

    Google Scholar 

  47. Mason PW, Krawiecki N, Meacham LR (2002) The use of dextroamphetamine to treat obesity and hyperphagia in children treated for craniopharyngioma. Arch Pediatr Adolesc Med 156:887–892 Medline

    PubMed  Google Scholar 

  48. Ismail D, O’Connell MA, Zacharin MR (2006) Dexamphetamine use for management of obesity and hypersomnolence following hypothalamic injury. J Pediatr Endocrinol Metab 19:129–134 Medline

    PubMed  CAS  Google Scholar 

  49. Arango C, Rojas MJ, Moreno D, Parellada M (2002) Sibutramine for compulsive eating in hypothalamic deficiency. J Am Acad Child Adolesc Psychiatry 41:1147–1148 Medline. doi:10.1097/00004583-200210000-00004

    Google Scholar 

  50. Pinto G, Bussieres L, Recasens C, Souberbielle JC, Zerah M, Brauner R (2000) Hormonal factors influencing weight and growth pattern in craniopharyngioma. Horm Res 53:163–169 Medline. doi:10.1159/000023562

    Google Scholar 

  51. Sklar CA, Mertens AC, Walter A et al (2000) Changes in body mass index and prevalence of overweight in survivors of childhood acute lymphoblastic leukemia: role of cranial irradiation. Med Pediatr Oncol 35:91–95 Medline. doi:10.1002/1096-911X(200008)35:2≤91::AID-MPO1 ≥ 3.0.CO;2-G

    Google Scholar 

  52. Odame I, Reilly JJ, Gibson BE, Donaldson MD (1994) Patterns of obesity in boys and girls after treatment for acute lymphoblastic leukaemia. Arch Dis Child 71:147–149 Medline

    Article  PubMed  CAS  Google Scholar 

  53. May JA, Krieger MD, Bowen I, Geffner ME (2006) Craniopharyngioma in childhood. Adv Pediatr 53:183–209 Medline. doi:10.1016/j.yapd.2006.04.013

    Google Scholar 

  54. Muller HL, Emser A, Faldum A et al (2004) Longitudinal study on growth and body mass index before and after diagnosis of childhood craniopharyngioma. J Clin Endocrinol Metab 89:3298–3305 Medline. doi:10.1210/jc.2003-031751

    Google Scholar 

  55. Muller HL, Bueb K, Bartels U et al (2001) Obesity after childhood craniopharyngioma—German multicenter study on pre-operative risk factors and quality of life. Klin Padiatr 213:244–249 Medline. doi:10.1055/s-2001-16855

    Google Scholar 

  56. Muller HL, Gebhardt U, Etavard-Gorris N et al (2004) Prognosis and sequela in patients with childhood craniopharyngioma—results of HIT-ENDO and update on KRANIOPHARYNGEOM 2000. Klin Padiatr 216:343–348 Medline. doi:10.1055/s-2004-832339

    Google Scholar 

  57. de Vile CJ, Grant DB, Hayward RD, Kendall BE, Neville BG, Stanhope R (1996) Obesity in childhood craniopharyngioma: relation to post-operative hypothalamic damage shown by magnetic resonance imaging. J Clin Endocrinol Metab 81:2734–2737 Medline. doi:10.1210/jc.81.7.2734

    Google Scholar 

  58. Lustig RH, Post SR, Srivannaboon K et al (2003) Risk factors for the development of obesity in children surviving brain tumors. J Clin Endocrinol Metab 88:611–616 Medline. doi:10.1210/jc.2002-021180

    Google Scholar 

  59. Daousi C, Dunn AJ, Foy PM, MacFarlane IA, Pinkney JH (2005) Endocrine and neuroanatomic features associated with weight gain and obesity in adult patients with hypothalamic damage. Am J Med 118:45–50 Medline. doi:10.1016/j.amjmed.2004.06.035

    Google Scholar 

  60. Vesely DL (1989) Hypothalamic sarcoidosis: a new cause of morbid obesity. South Med J 82:758–761 Medline

    PubMed  CAS  Google Scholar 

  61. Molina A, Mana J, Villabona C, Fernandez-Castaner M, Soler J (2002) Hypothalamic-pituitary sarcoidosis with hypopituitarism. Long-term remission with methylprednisolone pulse therapy. Pituitary 5:33–36 Medline. doi:10.1023/A:1022153401880

    Google Scholar 

  62. Belojevic G, Maric-Zivkovic J (2005) Sarcoidosis and obesity. Med Pregl 58(Suppl 1):44–45 Medline

    PubMed  Google Scholar 

  63. Tuite PJ, Maxwell RE, Ikramuddin S et al (2005) Weight and body mass index in Parkinson’s disease patients after deep brain stimulation surgery. Parkinsonism Relat Disord 11:247–252 Medline. doi:10.1016/j.parkreldis.2005.01.006

  64. Romito LM, Scerrati M, Contarino MF, Iacoangeli M, Bentivoglio AR, Albanese A (2003) Bilateral high frequency subthalamic stimulation in Parkinson’s disease: long-term neurological follow-up. J Neurosurg Sci 47:119–128 Medline

    PubMed  CAS  Google Scholar 

  65. Perlemoine C, Macia F, Tison F et al (2005) Effects of subthalamic nucleus deep brain stimulation and levodopa on energy production rate and substrate oxidation in Parkinson’s disease. Br J Nutr 93:191–198 Medline. doi:10.1079/BJN20041297

    Google Scholar 

  66. Macia F, Perlemoine C, Coman I et al (2004) Parkinson’s disease patients with bilateral subthalamic deep brain stimulation gain weight. Mov Disord 19:206–212 Medline. doi:10.1002/mds.10630

    Google Scholar 

  67. Montaurier C, Morio B, Bannier S et al (2007) Mechanisms of body weight gain in patients with Parkinson’s disease after subthalamic stimulation. Brain 130:1808–1818 Medline. doi:10.1093/brain/awm113

    Google Scholar 

  68. Lustig RH (2002) Hypothalamic obesity: the sixth cranial endocrinopathy. Endocrinologist 12:210–217

    Google Scholar 

  69. Lustig RH (2006) Obesity in childhood cancer survivors. Pediatr Endocrinol Rev 3(Suppl 2):306–311

    Google Scholar 

  70. Ahmet A, Blaser S, Stephens D, Guger S, Rutkas JT, Hamilton J (2006) Weight gain in craniopharyngioma—a model for hypothalamic obesity. J Pediatr Endocrinol Metab 19:121–127 Medline

    PubMed  Google Scholar 

  71. Srinivasan S, Ogle GD, Garnett SP, Briody JN, Lee JW, Cowell CT (2004) Features of the metabolic syndrome after childhood craniopharyngioma. J Clin Endocrinol Metab 89:81–86 Medline. doi:10.1210/jc.2003-030442

    Google Scholar 

  72. Bulow B, Attewell R, Hagmar L, Malmstrom P, Nordstrom CH, Erfurth EM (1998) Postoperative prognosis in craniopharyngioma with respect to cardiovascular mortality, survival, and tumor recurrence. J Clin Endocrinol Metab 83:3897–3904 Medline. doi:10.1210/jc.83.11.3897

    Google Scholar 

  73. Reeves AG, Plum F (1969) Hyperphagia, rage, and dementia accompanying a ventromedial hypothalamic neoplasm. Arch Neurol 20:616–624 Medline

    PubMed  CAS  Google Scholar 

  74. Cauble MS, Mack-Shipman L, Schaefer GB, Balakrishnan S, Larsen JL (2001) Idiopathic hypothalamic dysfunction with precocious puberty and adipsic hypernatremia first presenting in adolescence. J Pediatr Endocrinol Metab 14:1163–1167 Medline

    PubMed  CAS  Google Scholar 

  75. Gobatto CA, Mello MA, Souza CT, Ribeiro IA (2002) The monosodium glutamate (MSG) obese rat as a model for the study of exercise in obesity. Res Commun Mol Pathol Pharmacol 111:89–101 Medline

    PubMed  CAS  Google Scholar 

  76. Scomparin DX, Grassiolli S, Marcal AC, Gravena C, Andreazzi AE, Mathias PC (2006) Swim training applied at early age is critical to adrenal medulla catecholamine content and to attenuate monosodium L-glutamate-obesity onset in mice. Life Sci 79:2151–2156 Medline. doi:10.1016/j.lfs.2006.07.012

    Google Scholar 

  77. Martins AC, Souza KL, Shio MT, Mathias PC, Lelkes PI, Garcia RM (2004) Adrenal medullary function and expression of catecholamine-synthesizing enzymes in mice with hypothalamic obesity. Life Sci 74:3211–3222 Medline. doi:10.1016/j.lfs.2003.10.034

    Google Scholar 

  78. Muller HL, Heinrich M, Bueb K et al (2003) Perioperative dexamethasone treatment in childhood craniopharyngioma—influence on short-term and long-term weight gain. Exp Clin Endocrinol Diabetes 111:330–334 Medline. doi:10.1055/s-2003-42722

    Google Scholar 

  79. Tiosano D, Eisentein I, Militianu D, Chrousos GP, Hochberg Z (2003) 11 beta-Hydroxysteroid dehydrogenase activity in hypothalamic obesity. J Clin Endocrinol Metab 88:379–384 Medline. doi:10.1210/jc.2002-020511

    Google Scholar 

  80. Friedberg M, Zoumakis E, Hiroi N, Bader T, Chrousos GP, Hochberg Z (2003) Modulation of 11 beta-hydroxysteroid dehydrogenase type 1 in mature human subcutaneous adipocytes by hypothalamic messengers. J Clin Endocrinol Metab 88:385–393 Medline. doi:10.1210/jc.2002-020510

    Google Scholar 

  81. Fernandes JK, Klein MJ, Ater JL, Kuttesch JF, Vassilopoulou-Sellin R (2002) Triiodothyronine supplementation for hypothalamic obesity. Metabolism 51:1381–1383 Medline. doi:10.1053/meta.2002.35591

    Google Scholar 

  82. Hoffman AR, Kuntze JE, Baptista J et al (2004) Growth hormone (GH) replacement therapy in adult-onset gh deficiency: effects on body composition in men and women in a double-blind, randomized, placebo-controlled trial. J Clin Endocrinol Metab 89:2048–2056 Medline. doi:10.1210/jc.2003-030346

  83. Schoenle EJ, Zapf J, Prader A, Torresani T, Werder EA, Zachmann M (1995) Replacement of growth hormone (GH) in normally growing GH-deficient patients operated for craniopharyngioma. J Clin Endocrinol Metab 80:374–378 Medline. doi:10.1210/jc.80.2.374

    Google Scholar 

  84. Geffner M, Lundberg M, Koltowska-Haggstrom M et al (2004) Changes in height, weight, and body mass index in children with craniopharyngioma after three years of growth hormone therapy: analysis of KIGS (Pfizer International Growth Database). J Clin Endocrinol Metab 89:5435–5440 Medline. doi:10.1210/jc.2004-0667

    Google Scholar 

  85. Verhelst J, Kendall-Taylor P, Erfurth EM et al (2005) Baseline characteristics and response to 2 years of growth hormone (GH) replacement of hypopituitary patients with GH deficiency due to adult-onset craniopharyngioma in comparison with patients with nonfunctioning pituitary adenoma: data from KIMS (Pfizer International Metabolic Database). J Clin Endocrinol Metab 90:4636–4643 Medline. doi:10.1210/jc.2005-0185

    Google Scholar 

  86. Wilding J, Van Gaal L, Rissanen A, Vercruysse F, Fitchet M (2004) A randomized double-blind placebo-controlled study of the long-term efficacy and safety of topiramate in the treatment of obese subjects. Int J Obes Relat Metab Disord 28:1399–1410 Medline. doi:10.1038/sj.ijo.0802783

    Google Scholar 

  87. Bray GA, Hollander P, Klein S et al (2003) A 6-month randomized, placebo-controlled, dose-ranging trial of topiramate for weight loss in obesity. Obes Res 11:722–733 Medline

    Article  PubMed  CAS  Google Scholar 

  88. Gadde KM, Franciscy DM, Wagner HR II, Krishnan KR (2003) Zonisamide for weight loss in obese adults: a randomized controlled trial. JAMA 289:1820–1825 Medline. doi:10.1001/jama.289.14.1820

    Google Scholar 

  89. Despres JP (2007) The endocannabinoid system: a new target for the regulation of energy balance and metabolism. Crit Pathw Cardiol 6:46–50 Medline

    PubMed  Google Scholar 

  90. Pi-Sunyer FX, Aronne LJ, Heshmati HM, Devin J, Rosenstock J (2006) Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: a randomized controlled trial. JAMA 295:761–775 Medline. doi:10.1001/jama.295.7.761

    Google Scholar 

  91. Muller HL, Gebhardt U, Wessel V et al (2007) First experiences with laparoscopic adjustable gastric banding (LAGB) in the treatment of patients with childhood craniopharyngioma and morbid obesity. Klin Padiatr 219:323–325 Medline. doi:10.1055/s-2007-985848

    Google Scholar 

  92. Inge TH, Pfluger P, Zeller M et al (2007) Gastric bypass surgery for treatment of hypothalamic obesity after craniopharyngioma therapy. Nat Clin Pract Endocrinol Metab 3:606–609 Medline. doi:10.1038/ncpendmet0579

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, M., Korner, J. Review of physiology, clinical manifestations, and management of hypothalamic obesity in humans. Pituitary 12, 87–95 (2009). https://doi.org/10.1007/s11102-008-0096-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-008-0096-4

Keywords

Navigation