Skip to main content
Log in

Family portraits: the enzymes behind benzylisoquinoline alkaloid diversity

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Benzylisoquinoline alkaloids (BIAs) are a group of specialized metabolites found predominantly in the plant order Ranunculales. Approximately 2500 naturally occurring BIAs have been identified, many of which possess a variety of potent biological and pharmacological properties. The initial BIA skeleton is formed via condensation by a unique enzyme, norcoclaurine synthase, of the l-tyrosine derivatives dopamine and 4-hydroxyphenylacetaldehyde, yielding (S)-norcoclaurine as a central intermediate. The vast diversity of BIA structures is subsequently derived from (1) transformation of the basic BIA backbone by oxidative enzymes, particularly cytochromes P450 and FAD-linked oxidases, and (2) further structural and functional group modification by tailoring enzymes, which also include various reductases, dioxygenases, acetyltransferases, and carboxylesterases. Most of the biosynthetic enzymes responsible for the biosynthesis of major BIAs (i.e. morphine, noscapine, papaverine, and sanguinarine) in opium poppy (Papaver somniferum), and other compounds (e.g. berberine) in related plants, have been isolated and partially characterized. Diversity in BIA metabolism is driven by the modular and repetitive recruitment, and subsequent neo-functionalization, of a limited number of ancestral enzymes. In this review, BIA biosynthetic enzymes are discussed in the context of their respective families, facilitating exploration of common phylogeny and biochemical mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

2-ODD:

2-Oxoglutarate-dependent dioxygenase

2-OG:

2-Oxoglutarate

4′OMT:

3′-Hydroxy-N-methylcoclaurine 4′-hydroxylase

4-HPAA:

4-Hydroxyphenylacetaldehyde

6OMT:

Norcoclaurine 6-O-methyltransferase

7OMT:

Reticuline 7-O-methyltransferase

AKR:

Aldo-keto reductase

AT1:

1,13-Dihydroxy-N-methylcanadine 13-O-acetyltransferase

BBE:

Berbrine bridge enzyme

BIA:

Benzylisoquinoline alkaloid

BS:

Berbamunine synthase

CAS:

Canadine synthase

CFS:

Cheilanthifoline synthase

CNMT:

Coclaurine N-methyltransferase

CoA:

Coenzyme A

CODM:

Codeine O-demethylase

COR:

Codeinone reductase

CPR:

Cytochrome P450 reductase

CTS:

Corytuberine synthase

CXE:

Carboxylesterase

CYP:

Cytochrome P450

DBOX:

Dihydrobenzophenanthridine oxidase

DOPA:

3,4-Dihydroxyphenylalanine

DRS:

1,2-Dehydroreticuline synthase

DRR:

1,2-Dehydroreticuline reductase

FAD:

Flavin adenine dinucleotide

FADOX:

FAD-linked oxidoreductase

MSH:

N-Methylstylopine 14-hydroxylase

MT:

Methyltransferase

NADPH:

Nicotinamide adenine dinucleotide phosphate

N7OMT:

Norreticuline 7-O-methyltransferase

NCS:

Norcoclaurine synthase

NMCH:

(S)-N-Methylcoclaurine 3′-hydroxylase

NMT:

N-Methyltransferase

NOS:

Noscapine synthase

OMT:

O-Methyltransferase

P6H:

Protopine 6-hydroxylase

P7ODM:

Papaverine 7-O-demethylase

PavNMT:

Pavine N-methyltransferase

PR10:

Pathogenesis-related protein 10

PMT:

Putrescine N-methyltransferase

PODA:

Protopine O-dealkylase

REPI:

Reticuline epimerase

RNMT:

Reticuline N-methyltransferase

SalAT:

Salutaridinol 7-O-acetyltransferase

SalR:

Salutaridine reductase

SalSyn:

Salutaridine synthase

SAM:

S-Adenosylmethionine

SanR:

Sanguinarine reductase

SDR:

Short-chain dehydrogenase/reductase

SOMT:

Scoulerine 9-O-methyltransferase

SPDS:

Spermidine synthase

SPS:

Stylopine synthase

STOX:

(S)-Tetrahydroprotoberberine oxidase

T6ODM:

Thebaine 6-O-demethylase

TIM:

Triosephosphate isomerase

TNMT:

Tetrahydroprotoberberine N-methyltransferase

References

  • Agarwal P, Agarwal PK (2014) Pathogenesis related-10 proteins are small, structurally similar but with diverse role in stress signaling. Mol Biol Rep 41:599–611

    Article  CAS  PubMed  Google Scholar 

  • Allen RS, Millgate AG, Chitty JA, Thisleton J, Miller JA, Fist AJ, Gerlach WL, Larkin PJ (2004) RNAi-mediated replacement of morphine with the nonnarcotic alkaloid reticuline in opium poppy. Nat Biotechnol 22:1559–1566

    Article  CAS  PubMed  Google Scholar 

  • Amann M, Wanner G, Zenk MH (1986) Intracellular compartmentation of two enzymes of berberine biosynthesis in plant cell cultures. Planta 167:310–320

    Article  CAS  PubMed  Google Scholar 

  • Amann M, Nagakura N, Zenk MH (1988) Purification and properties of (S)-tetrahydroprotoberberine oxidase from suspension-cultured cells of Berberis wilsoniae. Eur J Biochem 175:17–25

    Article  CAS  PubMed  Google Scholar 

  • Angelova S, Buchheim M, Frowitter D, Schierhorn A, Roos W (2010) Overproduction of alkaloid phytoalexins in California poppy cells is associated with the co-expression of biosynthetic and stress-protective enzymes. Mol Plant 3:927–939

    Article  CAS  PubMed  Google Scholar 

  • Asai S, Mase K, Yoshioka H (2010) A key enzyme for flavin synthesis is required for nitric oxide and reactive oxygen species production in disease resistance. Plant J 62:911–924

    CAS  PubMed  Google Scholar 

  • Bak S, Beisson F, Bishop G, Hamberger B, Hofer R, Paquette S, Werck-Reichhart D (2011) Cytochromes P450. Arabidopsis B 9:e0144

    Article  Google Scholar 

  • Ballance GM, Dixon RA (1995) Medicago sativa cDNAs encoding chalcone reductase. Plant Physiol 107:1027–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barreiro EJ, Kümmerle AE, Fraga CAM (2011) The methylation effect in medicinal chemistry. Chem Rev 111:5215–5246

    Article  CAS  PubMed  Google Scholar 

  • Bassard JE, Richert L, Geerinck J, Renault H, Duval F, Ullmann P, Schmitt M, Meyer E, Mutterer J, Boerjan W, De Jaeger G, Mely Y, Goossens A, Werck-Reichhart D (2012) Protein-protein and protein-membrane associations in the lignin pathway. Plant Cell 24:4465–4482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaudoin GA, Facchini PJ (2013) Isolation and characterization of a cDNA encoding (S)-cis-N-methylstylopine 14-hydroxylase from opium poppy, a key enzyme in sanguinarine biosynthesis. Biochem Biophys Res Commun 431:597–603

    Article  CAS  PubMed  Google Scholar 

  • Bomati EK, Austin MB, Bowman ME, Dixon RA, Noel JP (2005) Structural elucidation of chalcone reductase and implications for deoxychalcone biosynthesis. J Biol Chem 280:30496–30503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bugg TDH (2003) Dioxygenase enzymes: catalytic mechanisms and chemical models. Tetrahedron 59:7075–7101

    Article  CAS  Google Scholar 

  • Burbulis IE, Winkel-Shirley B (1999) Interactions among enzymes of the Arabidopsis flavonoid biosynthetic pathway. Proc Natl Acad Sci USA 96:12929–12934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang YC, Chang FR, Khalil AT, Hsieh PW, Wu YC (2003) Cytotoxic benzophenanthridine and benzylisoquinoline alkaloids from Argemone mexicana. Z Naturforsch C 58:521–526

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Facchini PJ (2014) Short-chain dehydrogenase/reductase catalyzing the final step of noscapine biosynthesis is localized to laticifers in opium poppy. Plant J 77:173–184

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Jin Y, Penning TM (2015a) The rate-determining steps of aldo–keto reductases (AKRs), a study on human steroid 5-β-reductase (AKR1D1). Chem Biol Interact 234:360–365

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Dang TT, Facchini PJ (2015b) Noscapine comes of age. Phytochemistry 111:7–13

    Article  CAS  PubMed  Google Scholar 

  • Choi K-B, Morishige T, Shitan N, Yazaki K, Sato F (2002) Molecular cloning and characterization of coclaurine N-methyltransferase from cultured cells of Coptis japonica. J Biol Chem 277:830–835

    Article  CAS  PubMed  Google Scholar 

  • Custers JH, Harrison SJ, Sela-Buurlage MB, van Deventer E, Lageweg W, Howe PW, van der Meijs PJ, Ponstein AS, Simons BH, Melchers LS, Stuiver MH (2004) Isolation and characterisation of a class of carbohydrate oxidases from higher plants, with a role in active defence. Plant J 39:147–160

    Article  CAS  PubMed  Google Scholar 

  • D’Auria JC (2006) Acyltransferases in plants: a good time to be BAHD. Curr Opin Plant Biol 9:331–340

    Article  PubMed  CAS  Google Scholar 

  • Dang TT, Facchini PJ (2014a) Cloning and characterization of canadine synthase involved in noscapine biosynthesis in opium poppy. FEBS Lett 588:198–204

    Article  CAS  PubMed  Google Scholar 

  • Dang TT, Facchini PJ (2014b) CYP82Y1 is N-methylcanadine 1-hydroxylase, a key noscapine biosynthetic enzyme in opium poppy. J Biol Chem 289:2013–2026

    Article  CAS  PubMed  Google Scholar 

  • Dang TT, Chen X, Facchini PJ (2015) Acetylation serves as a protective group in noscapine biosynthesis in opium poppy. Nat Chem Biol 11:104–106

    Article  CAS  PubMed  Google Scholar 

  • Dastmalchi M, Bernards MA, Dhaubhadel S (2016) Twin anchors of the soybean isoflavonoid metabolon: evidence for tethering of the complex to the endoplasmic reticulum by IFS and C4H. Plant J 85:689–706

    Article  CAS  PubMed  Google Scholar 

  • Davies NJ, Hayden RE, Simpson PJ, Birtwistle J, Mayer K, Ride JP, Bunce CM (2009) AKR1C isoforms represent a novel cellular target for jasmonates alongside their mitochondrial-mediated effects. Cancer Res 69:4769–4775

    Article  CAS  PubMed  Google Scholar 

  • Desgagné-Penix I, Facchini PJ (2012) Systematic silencing of benzylisoquinoline alkaloid biosynthetic genes reveals the major route to papaverine in opium poppy. Plant J 72:331–344

    Article  PubMed  CAS  Google Scholar 

  • Diaz Chavez ML, Rolf M, Gesell A, Kutchan TM (2011) Characterization of two methylenedioxy bridge-forming cytochrome P450-dependent enzymes of alkaloid formation in the Mexican prickly poppy Argemone mexicana. Arch Biochem Biophys 507:186–193

    Article  CAS  PubMed  Google Scholar 

  • Dittrich H, Kutchan TM (1991) Molecular cloning, expression, and induction of berberine bridge enzyme, an enzyme essential to the formation of benzophenanthridine alkaloids in the response of plants to pathogenic attack. Proc Natl Acad Sci USA 88:9969–9973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Masry S, El-Ghazooly MG, Omar AA, Khafagy SM, Phillipson JD (1981) Alkaloids from Egyptian Papaver rhoeas. Planta Med 41:61–64

    Article  CAS  PubMed  Google Scholar 

  • Farrow SC, Facchini PJ (2013) Dioxygenases catalyze O-demethylation and O,O-demethylenation with widespread roles in benzylisoquinoline alkaloid metabolism in opium poppy. J Biol Chem 288:28997–29012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farrow SC, Facchini PJ (2014) Functional diversity of 2-oxoglutarate/Fe(II)-dependent dioxygenases in plant metabolism. Front Plant Sci 5:524

    Article  PubMed  PubMed Central  Google Scholar 

  • Farrow SC, Facchini PJ (2015) Papaverine 7-O-demethylase, a novel 2-oxoglutarate/Fe2+-dependent dioxygenase from opium poppy. FEBS Lett 589:2701–2706

    Article  CAS  PubMed  Google Scholar 

  • Farrow SC, Hagel JM, Beaudoin GA, Burns DC, Facchini PJ (2015) Stereochemical inversion of (S)-reticuline by a cytochrome P450 fusion in opium poppy. Nat Chem Biol 11:728–732

    Article  CAS  PubMed  Google Scholar 

  • Fernandes H, Michalska K, Sikorski M, Jaskolski M (2013) Structural and functional aspects of PR-10 proteins. FEBS J 280:1169–1199

    Article  CAS  PubMed  Google Scholar 

  • Filling C, Berndt KD, Benach J, Knapp S, Prozorovski T, Nordling E, Ladenstein R, Jornvall H, Oppermann U (2002) Critical residues for structure and catalysis in short-chain dehydrogenases/reductases. J Biol Chem 277:25677–25684

    Article  CAS  PubMed  Google Scholar 

  • Frick S, Kramell R, Schmidt J, Fist AJ, Kutchan TM (2005) Comparative qualitative and quantitative determination of alkaloids in narcotic and condiment Papaver somniferum cultivars. J Nat Prod 68:666–673

    Article  CAS  PubMed  Google Scholar 

  • Gershater MC, Edwards R (2007) Regulating biological activity in plants with carboxylesterases. Plant Sci 173:579–588

    Article  CAS  Google Scholar 

  • Gesell A, Rolf M, Ziegler J, Diaz Chavez ML, Huang FC, Kutchan TM (2009) CYP719B1 is salutaridine synthase, the C–C phenol-coupling enzyme of morphine biosynthesis in opium poppy. J Biol Chem 284:24432–24442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gesell A, Chavez ML, Kramell R, Piotrowski M, Macheroux P, Kutchan TM (2011) Heterologous expression of two FAD-dependent oxidases with (S)-tetrahydroprotoberberine oxidase activity from Argemone mexicana and Berberis wilsoniae in insect cells. Planta 233:1185–1197

    Article  CAS  PubMed  Google Scholar 

  • Grimshaw CE (1992) Aldose reductase: model for a new paradigm of enzymic perfection in detoxification catalysts. Biochemistry 31:10139–10145

    Article  CAS  PubMed  Google Scholar 

  • Grothe T, Lenz R, Kutchan TM (2001) Molecular characterization of the salutaridinol 7-O-acetyltransferase involved in morphine biosynthesis in opium poppy Papaver somniferum. J Biol Chem 276:30717–30723

    Article  CAS  PubMed  Google Scholar 

  • Groves JT (2006) High-valent iron in chemical and biological oxidations. J Inorg Biochem 100:434–447

    Article  CAS  PubMed  Google Scholar 

  • Hagel JM, Facchini PJ (2010) Dioxygenases catalyze the O-demethylation steps of morphine biosynthesis in opium poppy. Nat Chem Biol 6:273–275

    Article  CAS  PubMed  Google Scholar 

  • Hagel JM, Facchini PJ (2012) Subcellular localization of sanguinarine biosynthetic enzymes in cultured opium poppy cells. In Vitro Cell Dev Biol Plant 48:233–240

    Article  CAS  Google Scholar 

  • Hagel JM, Facchini PJ (2013) Benzylisoquinoline alkaloid metabolism: a century of discovery and a brave new world. Plant Cell Physiol 54:647–672

    Article  CAS  PubMed  Google Scholar 

  • Hagel JM, Beaudoin GA, Fossati E, Ekins A, Martin VJ, Facchini PJ (2012) Characterization of a flavoprotein oxidase from opium poppy catalyzing the final steps in sanguinarine and papaverine biosynthesis. J Biol Chem 287:42972–42983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagel JM, Morris JS, Lee EJ, Desgagné-Penix I, Bross CD, Chang L, Chen X, Farrow SC, Zhang Y, Soh J, Sensen CW, Facchini PJ (2015) Transcriptome analysis of 20 taxonomically related benzylisoquinoline alkaloid-producing plants. BMC Plant Biol 15:227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hashimoto T, Shoji T, Mihara T, Oguri H, Tamaki K, Suzuki K, Yamada Y (1998) Intraspecific variability of the tandem repeats in Nicotiana putrescine N-methyltransferases. Plant Mol Biol 37:25–37

    Article  CAS  PubMed  Google Scholar 

  • Higashi Y, Kutchan TM, Smith TJ (2011) Atomic structure of salutaridine reductase from the opium poppy (Papaver somniferum). J Biol Chem 286:6532–6541

    Article  CAS  PubMed  Google Scholar 

  • Huang FC, Kutchan TM (2000) Distribution of morphinan and benzo[c]phenanthridine alkaloid gene transcript accumulation in Papaver somninferum. Phytochemistry 53:555–564

    Article  CAS  PubMed  Google Scholar 

  • Huang CC, Smith CV, Glickman MS, Jocobs WR Jr, Sacchettini JC (2002) Crystal structures of mycolic acid cyclopropane synthases from Mycobacterium tuberculosis. J Biol Chem 277:11559–11569

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim RK, Bruneau A, Bantignies B (1998) Plant O-methyltransferases: molecular analysis, common signature and classification. Plant Mol Biol 36:1–10

    Article  CAS  PubMed  Google Scholar 

  • Ikezawa N, Tanaka M, Nagayoshi M, Shinkyo R, Sakaki T, Inouye K, Sato F (2003) Molecular cloning and characterization of CYP719, a methylenedioxy bridge-forming enzyme that belongs to a novel P450 family, from cultured Coptis japonica cells. J Biol Chem 278:38557–38565

    Article  CAS  PubMed  Google Scholar 

  • Ikezawa N, Iwasa K, Sato F (2008) Molecular cloning and characterization of CYP80G2, a cytochrome P450 that catalyzes an intramolecular C–C phenol coupling of (S)-reticuline in magnoflorine biosynthesis, from cultured Coptis japonica cells. J Biol Chem 283:8810–8821

    Article  CAS  PubMed  Google Scholar 

  • Ilari A, Franceschini S, Bonamore A, Arenghi F, Botta B, Macone A, Pasquo A, Bellucci L, Boffi A (2009) Structural basis of enzymatic (S)-norcoclaurine biosynthesis. J Biol Chem 284:897–904

    Article  CAS  PubMed  Google Scholar 

  • Jez JM, Bennett MJ, Schlegel BP, Lewis M, Penning TM (1997) Comparative anatomy of the aldo–keto reductase superfamily. Biochem J 326:625–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jirschitzka J, Schmidt GW, Reichelt M, Schneider B, Gershenzon J, D’Auria JC (2012) Plant tropane alkaloid biosynthesis evolved independently in the Solanaceae and Erythroxylaceae. Proc Natl Acad Sci USA 109:10304–10309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jornvall H, Persson B, Krook M, Atrian S, Gonzalez-Duarte R, Jeffery J, Ghosh D (1995) Short-chain dehydrogenases/reductases (SDR). Biochemistry 34:6003–6013

    Article  CAS  PubMed  Google Scholar 

  • Junker A, Fischer J, Sichhart Y, Brandt W, Drager B (2013) Evolution of the key alkaloid enzyme putrescine N-methyltransferase from spermidine synthase. Front Plant Sci 4:260

    Article  PubMed  PubMed Central  Google Scholar 

  • Kagan RM, Clarke S (1994) Widespread occurrence of three sequence motifs in diverse S-adenosylmethionine-dependent methyltransferases suggests a common structure for these enzymes. Arch Biochem Biophys 310:417–427

    Article  CAS  PubMed  Google Scholar 

  • Kallberg Y, Persson B (2006) Prediction of coenzyme specificity in dehydrogenases/reductases. A hidden Markov model-based method and its application on complete genomes. FEBS J 273:1177–1184

    Article  CAS  PubMed  Google Scholar 

  • Kanayama Y, Mori H, Imaseki H, Yamaki S (1992) Nucleotide sequence of a cDNA encoding NADP-sorbitol-6-phosphate dehydrogenase from apple. Plant Physiol 100:1607–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kavanagh KL, Jornvall H, Persson B, Oppermann U (2008) Medium- and short-chain dehydrogenase/reductase gene and protein families—the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci 65:3895–3906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai Y, Ono E, Mizutani M (2014) Evolution and diversity of the 2-oxoglutarate-dependent dioxygenase superfamily in plants. Plant J 78:328–343

    Article  CAS  PubMed  Google Scholar 

  • Kozbial PZ, Mushegian AR (2005) Natural history of S-adenosylmethionine-binding proteins. BMC Struct Biol 5:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kraus PF, Kutchan TM (1995) Molecular cloning and heterologous expression of a cDNA encoding berbamunine synthase, a C–O phenol-coupling cytochrome P450 from the higher plant Berberis stolonifera. Proc Natl Acad Sci USA 92:2071–2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar D, Klessig DF (2003) High-affinity salicylic acid-binding protein 2 is required for plant innate immunity and has salicylic acid-stimulated lipase activity. Proc Natl Acad Sci USA 100:16101–16106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lallemand B, Erhardt M, Heitz T, Legrand M (2013) Sporopollenin biosynthetic enzymes interact and constitute a metabolon localized to the endoplasmic reticulum of tapetum cells. Plant Physiol 162:616–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lameira J, Bora RP, Chu ZT, Warshel A (2015) Methyltransferases do not work by compression, cratic, or desolvation effects, but by electrostatic preorganization. Prot Struct Funct Bioinform 72:181–204

    Google Scholar 

  • Laursen T, Borch J, Knudsen C, Bavishi K, Torta F, Martens HJ, Silvestro D, Hatzakis NS, Wenk MR, Dafforn TR, Olsen CE, Motawia MS, Hamberger B, Møller BL, Bassard JE (2016) Characterization of a dynamic metabolon producing the defense compound dhurrin in sorghum. Science 354:890–893

    Article  CAS  PubMed  Google Scholar 

  • Lee E-J, Facchini PJ (2010) Norcoclaurine synthase is a member of the pathogenesis-related 10/Bet v1 protein family. Plant Cell 22:3489–3503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee E-J, Hagel JM, Facchini PJ (2013) Role of the phloem in the biochemistry and ecophysiology of benzylisoquinoline alkaloid metabolism. Front Plant Sci 4:182

    PubMed  PubMed Central  Google Scholar 

  • Li Y, Smolke CD (2016) Engineering biosynthesis of the anticancer alkaloid noscapine in yeast. Nat Commun 7:12137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Lee E-J, Chang L, Facchini PJ (2016) Genes encoding norcoclaurine synthase occur as tandem fusions in the Papaveraceae. Sci Rep 6:39256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lichman BR, Gershater MC, Lamming ED, Pesnot T, Sula A, Keep NH, Hailes HC, Ward JM (2015) ‘Dopamine-first’ mechanism enables the rational engineering of the norcoclaurine synthase aldehyde activity profile. FEBS J 282:1137–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liscombe DK, Facchini PJ (2007) Molecular cloning and characterization of tetrahydroprotoberberine cis-N-methyltransferase, an enzyme involved in alkaloid biosynthesis in opium poppy. J Biol Chem 282:14741–14751

    Article  CAS  PubMed  Google Scholar 

  • Liscombe DK, MacLeod BP, Loukanina N, Nandi OI, Facchini PJ (2005) Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms. Phytochemistry 66:1374–1393

    Article  CAS  PubMed  Google Scholar 

  • Liscombe DK, Ziegler J, Schmidt J, Ammer C, Facchini PJ (2009) Targeted metabolite and transcript profiling for elucidating enzyme function: isolation of novel N-methyltransferases from three benzylisoquinoline alkaloid-producing species. Plant J 60:729–743

    Article  CAS  PubMed  Google Scholar 

  • Liscombe DK, Louie GV, Noel JP (2012) Architectures, mechanisms and molecular evolution of natural product methyltransferases. Nat Prod Rep 29:1238

    Article  CAS  PubMed  Google Scholar 

  • Loeffler S, Deus-Neumann B, Zenk MH (1995) S-adenosyl-l-methionine:(S)-coclaurine-N-methyltransferase from Tinospora cordifolia. Phytochemistry 38:1387–1395

    Article  CAS  Google Scholar 

  • Loenarz C, Schofield CJ (2008) Expanding chemical biology of 2-oxoglutarate oxygenases. Nat Chem Biol 4:152–156

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Koepke J, Panjikar S, Fritzsch G, Stöckigt J (2005) Crystal structure of vinorine synthase, the first representative of the BAHD superfamily. J Biol Chem 280:13576–13583

    Article  CAS  PubMed  Google Scholar 

  • Macheroux P, Kappes B, Ealick SE (2011) Flavogenomics—a genomic and structural view of flavin-dependent proteins. FEBS J 278:2625–2634

    Article  CAS  PubMed  Google Scholar 

  • Mansuy D (1998) The great diversity of reactions catalyzed by cytochromes P450. Comp Biochem Physiol C 121:5–14

    CAS  PubMed  Google Scholar 

  • Mao G, Seebeck T, Schrenker D, Yu O (2013) CYP709B3, a cytochrome P450 monooxygenase gene involved in salt tolerance in Arabidopsis thaliana. BMC Plant Biol 13:169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Minami H, Kim J-S, Ikezawa N, Takemura T, Katayama T, Kumagai H, Sato F (2008) Microbial production of plant benzylisoquinoline alkaloids. Proc Natl Acad Sci USA 105:7393–7398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mindrebo JT, Nartey CM, Seto Y, Burkart MD, Noel JP (2016) Unveiling the functional diversity of the alpha/beta hydrolase superfamily in the plant kingdom. Curr Opin Struct Biol 41:233–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morimoto S, Suemori K, Moriwaki J, Taura F, Tanaka H, Aso M, Tanaka M, Suemune H, Shimohigashi Y, Shoyama Y (2001) Morphine metabolism in the opium poppy and its possible physiological function. Biochemical characterization of the morphine metabolite, bismorphine. J Biol Chem 276:38179–38184

    Article  CAS  PubMed  Google Scholar 

  • Morishige T, Tsujita T, Yamada Y, Sato F (2000) Molecular characterization of the S-adenosyl-l-methionine:3′-hydroxy-N-methylcoclaurine 4′-O-methyltransferase involved in isoquinoline alkaloid biosynthesis in Coptis japonica. J Biol Chem 275:23398–23405

    Article  CAS  PubMed  Google Scholar 

  • Morris JS, Facchini PJ (2016) Isolation and characterization of reticuline N-methyltransferase involved in biosynthesis of the aporphine alkaloid magnoflorine in opium poppy. J Biol Chem 291:23416–23427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moummou H, Kallberg Y, Tonfack LB, Persson B, van der Rest B (2012) The plant short-chain dehydrogenase (SDR) superfamily: genome-wide inventory and diversification patterns. BMC Plant Biol 12:219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mudd SH (1973) S-Adenosylmethionine synthetase. Enzymes 8:21–154

    Google Scholar 

  • Nakajima K, Hashimoto T, Yamada Y (1993) Two tropinone reductases with different stereospecificities are short-chain dehydrogenases evolved from a common ancestor. Proc Natl Acad Sci USA 90:9591–9595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson DR (2009) The cytochrome P450 homepage. Hum Genomics 4:59–65

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson DR, Schuler MA, Paquette SM, Werck-Reichhart D, Bak S (2004) Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiol 135:756–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen KA, Tattersall DB, Jones PR, Møller BL (2008) Metabolon formation in dhurrin biosynthesis. Phytochemistry 69:88–98

    Article  CAS  PubMed  Google Scholar 

  • Ober D, Hartmann T (2000) Phylogenetic origin of a secondary pathway: the case of pyrrolizidine alkaloids. Plant Mol Biol 44:445–450

    Article  CAS  PubMed  Google Scholar 

  • Oberschall A, Deak M, Torok K, Sass L, Vass I, Kovacs I, Feher A, Dudits D, Horvath GV (2000) A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stresses. Plant J 24:437–446

    Article  CAS  PubMed  Google Scholar 

  • Ollis DL, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington SJ, Silman I, Schrag J et al (1992) The alpha/beta hydrolase fold. Protein Eng 5:197–211

    Article  CAS  PubMed  Google Scholar 

  • Oppermann U, Filling C, Hult M, Shafqat N, Wu X, Lindh M, Shafqat J, Nordling E, Kallberg Y, Persson B, Jörnvall H (2003) Short-chain dehydrogenases/reductases (SDR): the 2002 update. Chem Biol Interact 143–144:247–253

    Article  PubMed  CAS  Google Scholar 

  • Ounaroon A, Decker G, Schmidt J, Lottspeich F, Kutchan TM (2003) (R,S)-Reticuline 7-O-methyltransferase and (R,S)-norcoclaurine 6-O-methyltransferase of Papaver somniferum—cDNA cloning and characterization of methyl transfer enzymes of alkaloid biosynthesis in opium poppy. Plant J 36:808–819

    Article  CAS  PubMed  Google Scholar 

  • Pauli HH, Kutchan TM (1998) Molecular cloning and functional heterologous expression of two alleles encoding (S)-N-methylcoclaurine 3′-hydroxylase (CYP80B1), a new methyl jasmonate-inducible cytochrome P-450-dependent mono-oxygenase of benzylisoquinoline alkaloid biosynthesis. Plant J 13:793–801

    Article  CAS  PubMed  Google Scholar 

  • Penning TM (2014) Human aldo–keto reductases and the metabolic activation of polycyclic aromatic hydrocarbons. Chem Res Toxicol 27:1901–1917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penning TM (2015) The aldo–keto reductases (AKRs): overview. Chem Biol Interact 234:236–246

    Article  CAS  PubMed  Google Scholar 

  • Persson B, Kallberg Y, Bray JE, Bruford E, Dellaporta SL, Favia AD, Duarte RG, Jornvall H, Kavanagh KL, Kedishvili N, Kisiela M, Maser E, Mindnich R, Orchard S, Penning TM, Thornton JM, Adamski J, Oppermann U (2009) The SDR (short-chain dehydrogenase/reductase and related enzymes) nomenclature initiative. Chem Biol Interact 178:94–98

    Article  CAS  PubMed  Google Scholar 

  • Pesnot T, Gershater MC, Ward JM, Hailes HC (2011) Phosphate mediated biomimetic synthesis of tetrahydroisoquinoline alkaloids. Chem Commun 47:3242–3244

    Article  CAS  Google Scholar 

  • Petrossian TC, Clarke SG (2011) Uncovering the human methyltransferasome. Mol Cell Proteomics 10(M110):000976

    PubMed  Google Scholar 

  • Pienkny S, Brandt W, Schmidt J, Kramell R, Ziegler J (2009) Functional characterization of a novel benzylisoquinoline O-methyltransferase suggests its involvement in papaverine biosynthesis in opium poppy (Papaver somniferum L). Plant J 60:56–67

    Article  CAS  PubMed  Google Scholar 

  • Pilka ES, Niesen FH, Lee WH, El-Hawari Y, Dunford JE, Kochan G, Wsol V, Martin HJ, Maser E, Oppermann U (2009) Structural basis for substrate specificity in human monomeric carbonyl reductases. PLoS ONE 4:e7113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Priestap HA, Velandia AE, Johnson JV, Barbieri MA (2012) Secondary metabolite uptake by the Aristolochia-feeding papilionoid butter fly Battus polydamas. Biochem Syst Ecol 40:126–137

    Article  CAS  Google Scholar 

  • Robin AY, Giustini C, Graindorge M, Matringe M, Dumas R (2016) Crystal structure of norcoclaurine-6-O-methyltransferase a key rate-limiting step in the synthesis of benzylisoquinoline alkaloids. Plant J 87:641–653

    Article  CAS  PubMed  Google Scholar 

  • Runguphan W, Glenn WS, O’Connor SE (2012) Redesign of a dioxygenase in morphine biosynthesis. Chem Biol 19:674–678

    Article  CAS  PubMed  Google Scholar 

  • Schubert HL, Blumenthal RM, Cheng X (2003) Many paths to methyltransfer: a chronicle of convergence. Trends Biochem Sci 28:329–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuler MA, Werck-Reichhart D (2003) Functional genomics of P450s. Annu Rev Plant Biol 54:629–667

    Article  CAS  PubMed  Google Scholar 

  • Schuler MA, Duan H, Bilgin M, Ali S (2006) Arabidopsis cytochrome P450s through the looking glass: a window on plant biochemistry. Phytochem Rev 5:205–237

    Article  CAS  Google Scholar 

  • Schütz I, Moritz GB, Roos W (2014) Alkaloid metabolism in thrips–Papaveraceae interaction: recognition and mutual response. J Plant Physiol 171:119–126

    Article  PubMed  CAS  Google Scholar 

  • Simpson PJ, Tantitadapitak C, Reed AM, Mather OC, Bunce CM, White SA, Ride JP (2009) Characterization of two novel aldo-keto reductases from Arabidopsis: expression patterns, broad substrate specificity, and an open active-site structure suggest a role in toxicant metabolism following stress. J Mol Biol 392:465–480

    Article  CAS  PubMed  Google Scholar 

  • Singleton C, Howard TP, Smirnoff N (2014) Synthetic metabolons for metabolic engineering. J Exp Bot 65:1947–1954

    Article  CAS  PubMed  Google Scholar 

  • Sinnott M (1997) Comprehensive biological catalysis: a mechanistic reference. Academic Press, London

    Google Scholar 

  • Sirikantaramas S, Morimoto S, Shoyama Y, Ishikawa Y, Wada Y, Shoyama Y, Taura F (2004) The gene controlling marijuana psychoactivity. Molecular cloning and heterologous expression of 1-tetrahydrocannabinolic acid synthase from Cannabis sativa L. J Biol Chem 279:39767–39774

    Article  CAS  PubMed  Google Scholar 

  • Srere PA (1985) The metabolon. Trends Biochem Sci 10:109–110

    Article  Google Scholar 

  • Stafford HA (1974) Activation of 4-hydroxycinnamate hydroxylase in extracts from sorghum. Plant Physiol 54:686–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • St-Pierre B, De Luca V (2000) Origin and diversification of the BAHD superfamily of acyltransferases involved in secondary metabolism. Recent Adv Phytochem 34:285–315

    Article  CAS  Google Scholar 

  • Tang H, Vasconcelos AC, Berkowitz GA (1995) Evidence that plant K+ channel proteins have two different types of subunits. Plant Physiol 109:327–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tani C, Tagahara K (1977) Studies on the alkaloids of papeveraceous plants. XXVIII. The biosynthesis of rhoeadine. Yakugaku Zasshi 97:93–102

    Article  CAS  PubMed  Google Scholar 

  • Taura F, Sirikantaramas S, Shoyama Y, Yoshikai K, Shoyama Y, Morimoto S (2007) Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa. FEBS Lett 581:2929–2934

    Article  CAS  PubMed  Google Scholar 

  • Thodey K, Galanie S, Smolke CD (2014) A microbial biomanufacturing platform for natural and semisynthetic opioids. Nat Chem Biol 10:837–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres MA, Hoffarth E, Eugenio L, Savtchouk J, Chen X, Morris JS, Facchini PJ, Ng KK (2016) Structural and functional studies of pavine N-methyltransferase from Thalictrum flavum reveal novel insights into substrate recognition and catalytic mechanism. J Biol Chem 291:23403–23415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unterlinner B, Lenz R, Kutchan TM (1999) Molecular cloning and functional expression of codeinone reductase: the penultimate enzyme in morphine biosynthesis in the opium poppy Papaver somniferum. Plant J 18:465–475

    Article  CAS  PubMed  Google Scholar 

  • Vekemans D, Proost S, Vanneste K, Coenen H, Viaene T, Ruelens P, Maere S, Van de Peer Y, Geuten K (2012) Gamma paleohexaploidy in the stem lineage of core eudicots: significance for MADS-box gene and species diversification. Mol Biol Evol 29:3793–3806

    Article  CAS  PubMed  Google Scholar 

  • Vogel M, Lawson M, Sippl W, Conrad U, Roos W (2010) Structure and mechanism of sanguinarine reductase, an enzyme of alkaloid detoxification. J Biol Chem 285:18397–18406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallner S, Winkler A, Riedl S, Dully C, Horvath S, Gruber K, Macheroux P (2012) Catalytic and structural role of a conserved active site histidine in berberine bridge enzyme. Biochemistry 51:6139–6147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CF, Fan L, Tian M, Du SS, Deng ZW, Feng JB, Wang YY, Su X (2015) Cytotoxicity of benzophenanthridine alkaloids from the roots of Zanthoxylum nitidum (Roxb.) DC. var. fastuosum How ex Huang. Nat Prod Res 29:1380–1383

    Article  CAS  PubMed  Google Scholar 

  • Weiss D, Baumert A, Vogel M, Roos W (2006) Sanguinarine reductase, a key enzyme of benzophenanthridine detoxification. Plant Cell Environ 29:291–302

    Article  CAS  PubMed  Google Scholar 

  • Werck-Reichhart D, Feyereisen R (2000) Cytochromes P450: a success story. Genome Biol 1:reviews3003.1–reviews3003.9

    Article  Google Scholar 

  • Werck-Reichhart D, Bak S, Paquette S (2002) Cytochromes P450. Arabidopsis Book 1:e0028

    Article  PubMed  PubMed Central  Google Scholar 

  • Wermuth B (1981) Purification and properties of an NADPH-dependent carbonyl reductase from human brain. Relationship to prostaglandin 9-ketoreductase and xenobiotic ketone reductase. J Biol Chem 256:1206–1213

    CAS  PubMed  Google Scholar 

  • Wessjohann LA, Keim J, Weigel B, Dippe M (2013) Alkylating enzymes. Curr Opin Chem Biol 17:229–235

    Article  CAS  PubMed  Google Scholar 

  • Wijekoon CP, Facchini PJ (2012) Systematic knockdown of morphine pathway enzymes in opium poppy using virus-induced gene silencing. Plant J 69:1052–1063

    Article  PubMed  CAS  Google Scholar 

  • Williams PA, Cosme J, Sridhar V, Johnson EF, McRee DE (2000) Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol Cell 5:121–131

    Article  CAS  PubMed  Google Scholar 

  • Wilmouth RC, Turnbull JJ, Welford RW, Clifton IJ, Prescott AG, Schofield CJ (2002) Structure and mechanism of anthocyanidin synthase from Arabidopsis thaliana. Structure 10:93–103

    Article  CAS  PubMed  Google Scholar 

  • Winkler W, Awe W (1961) On the structure of rhoeadine isomers isolated from Papaver rhoeas. Arch Pharm 294(66):301–306

    Article  CAS  Google Scholar 

  • Winkler A, Hartner F, Kutchan TM, Glieder A, Macheroux P (2006) Biochemical evidence that berberine bridge enzyme belongs to a novel family of flavoproteins containing a bi-covalently attached FAD cofactor. J Biol Chem 281:21276–21285

    Article  CAS  PubMed  Google Scholar 

  • Winkler A, Lyskowski A, Riedl S, Puhl M, Kutchan TM, Macheroux P, Gruber K (2008) A concerted mechanism for berberine bridge enzyme. Nat Chem Biol 4:739–741

    Article  CAS  PubMed  Google Scholar 

  • Winkler A, Motz K, Riedl S, Puhl M, Macheroux P, Gruber K (2009) Structural and mechanistic studies reveal the functional role of bicovalent flavinylation in berberine bridge enzyme. J Biol Chem 284:19993–20001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winzer T, Gazda V, He Z, Kaminski F, Kern M, Larson TR, Li Y, Meade F, Teodor R, Vaistij FE, Walker C, Bowser TA, Graham IA (2012) A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine. Science 336:1704–1708

    Article  CAS  PubMed  Google Scholar 

  • Winzer T, Kern M, King AJ, Larson TR, Teodor RI, Donninger SL, Li Y, Dowle AA, Cartwright J, Bates R, Ashford D, Thomas J, Walker C, Bowser TA, Graham IA (2015) Morphinan biosynthesis in opium poppy requires a P450-oxidoreductase fusion protein. Science 349:309–312

    Article  CAS  PubMed  Google Scholar 

  • Wlodarski T, Kutner J, Towpik J, Knizewski L, Rychlewski L, Kudlicki A, Rowicka M, Dziembowski A, Ginalski K (2011) Comprehensive structural and substrate specificity classification of the Saccharomyces cerevisiae methyltransferome. PLoS ONE 6:e23168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu F (2005) Applications of oxidoreductases: recent progress. Ind Biotechnol 1:38–50

    Article  CAS  Google Scholar 

  • Ziegler J, Voigtlander S, Schmidt J, Kramell R, Miersch O, Ammer C, Gesell A, Kutchan TM (2006) Comparative transcript and alkaloid profiling in Papaver species identifies a short chain dehydrogenase/reductase involved in morphine biosynthesis. Plant J 48:177–192

    Article  CAS  PubMed  Google Scholar 

  • Zubieta C, He X-Z, Dixon RA, Noel JP (2001) Structures of two natural product methyltransferases reveal the basis for substrate specificity in plant O-methyltransferases. Nat Struct Mol Biol 8:271–279

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by financial contributions from a Natural Sciences and Engineering Research Council of Canada Discovery Grant to PJF. MRP is the recipient of a University of Calgary Eyes High Postdoctoral Scholarship. JSM is the recipient of a Natural Sciences and Engineering Reserach Council of Canada Postgraduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Facchini.

Ethics declarations

Conflicts of interest

PJF owns stock in, serves on the Board of Directors of, and is provided compensation by Epimeron Inc. MD, MRP and JSM also receive compensation from Epimeron as contractors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dastmalchi, M., Park, M.R., Morris, J.S. et al. Family portraits: the enzymes behind benzylisoquinoline alkaloid diversity. Phytochem Rev 17, 249–277 (2018). https://doi.org/10.1007/s11101-017-9519-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-017-9519-z

Keywords

Navigation