, Volume 56, Issue 4, pp 1188–1203 | Cite as

Physiological changes and growth promotion induced in poplar seedlings by the plant growth-promoting rhizobacteria Bacillus subtilis JS

  • J. H. Jang
  • S. -H. Kim
  • I. Khaine
  • M. J. Kwak
  • H. K. Lee
  • T. Y. Lee
  • W. Y. Lee
  • S. Y. Woo
Original paper


This study aimed to determine the effects of plant growth-promoting rhizobacteria Bacillus subtilis JS on the growth and physiological changes of Populus euramericana and Populus deltoides × P. nigra. Poplar seedlings were treated with B. subtilis JS and their growth was monitored for up to 120 d. Three different types of treatments [control, B1 (B. subtilis:double-distilled water, 1:100, v/v), and B2 (1:50)] were established. B. subtilis JS enhanced seedling height by 62% and total biomass by 37% after 120 d. Physiologically, the photosynthetic rate increased by 54%, and the total chlorophyll (Chl) content, foliage nitrogen and phosphate content were significantly higher after treatment with B2 than that of the control. These results suggest that the total Chl content is directly related to not only the photosynthetic capacity of the foliage but also to the nitrogen content, indicating that the strain JS may promote the growth of poplar.

Additional key words

biofertilization biomass fast-growing tree gas exchange pigment root activity 



Bacillus subtilis JS inoculation with double-distilled water (dilution rate of 1 in 100)


Bacillus subtilis JS inoculation with double-distilled water (dilution rate of 1 in 50)


total carotenoid


total chlorophyll


colonyforming units


double-distilled water


transpiration rate


stomatal conductance


total nitrogen content of leaf


plant growth-promoting rhizobacteria


phosphate content of leaf


net photosynthetic rate


relative growth rate


reactive oxygen species


short rotation coppice cultures


triphenyl formazan


triphenyltetrazolium chloride


water-use efficiency


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams M.A., Turnbull T.L., Sprent J.I. et al.: Legumes are different: Leaf nitrogen, photosynthesis, and water use efficiency.–P. Natl. Acad. Sci. USA 113: 4098–4103, 2016.CrossRefGoogle Scholar
  2. Arkhipova T.N., Veselov S.U., Melentiev A.I. et al.: Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants.–Plant Soil 272: 201–209, 2005.CrossRefGoogle Scholar
  3. Arnon D.I.: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris.–Plant Physiol. 24: 1, 1949.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Asaka O., Shoda M.: Biocontrol of Rhizoctonia solani dampingoff of tomato with Bacillus subtilis RB14.–Appl. Environ. Microbiol. 62: 4081–4085, 1996.PubMedPubMedCentralGoogle Scholar
  5. Aslantas R., Ramazan Ç., Fikrettin S.: Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions.–Sci. Hortic.-Amsterdam 111: 371–377, 2007.CrossRefGoogle Scholar
  6. Badizi B.M., Zarandi M.M.: Some physiological and growth parameters of Pistachio vera L. under coinoculation with endomycorrhizae and Bacillus subtilis in response to salinity.–Bull. Environ. Pharmacol. Life Sci. 1: 70–77, 2016.Google Scholar
  7. Bandopadhyay S.: Effects of dual inoculation of plant growth promoting rhizobacteria on different non-leguminous plants under pot condition.–Indian J. Microbiol. Res. 2: 20–26, 2015.Google Scholar
  8. Bianco R.L., Policarpo M., Scariano L.: Effects of rootstock vigour and in-row spacing on stem and root growth, conformation and dry-matter distribution of young apple trees.–J. Hortic. Sci. Biotechnol. 78: 828–836, 2003.CrossRefGoogle Scholar
  9. Biswas J.C., Ladha J.K., Dazzo F.B.: Rhizobia inoculation improves nutrient uptake and growth of lowland rice.–Soil Sci. Soc. Am J. 64: 1644–1650, 2000.CrossRefGoogle Scholar
  10. Bremner J.M.: Nitrogen-total.–In: Sparks D.L. Page A.L., Helmke P.A., et al. (ed.): Methods of Soil Analysis, part 3. Chemical methods. Pp. 1085–1122. SSSA, ASA, Madison 1996.Google Scholar
  11. Cernusak L.A., Aranda J., Marshall J.D. et al.: Large variation in whole-plant water use efficiency among tropical tree species.–New Phytol. 173: 294–305, 2006.CrossRefGoogle Scholar
  12. Ciompi S., Gentili E., Guidi L. et al.: The effect of nitrogen deficiency on leaf gas exchange and chlorophyll fluorescence parameters.–Plant Sci. 118: 177–184, 1996.CrossRefGoogle Scholar
  13. Coleman M.D., Dickson R.E., Isebrands J.G.: Growth and physiology of aspen supplied with different fertilizer addition rates.–Physiol. Plantarum 103: 513–526, 1998.CrossRefGoogle Scholar
  14. Cooke J.E., Martin T.A., Davis J.M.: Short-term physiological and developmental responses to nitrogen availability in hybrid poplar.–New. Phytol. 167: 41–52, 2005.CrossRefPubMedGoogle Scholar
  15. Cui X., Dong Y., Gi P. et al.: Relationship between root vigour, photosynthesis and biomass in soybean cultivars during 87 years of genetic improvement in the northern China.–Photosynthetica 54: 81–86, 2016.CrossRefGoogle Scholar
  16. Dickmann D.I., Nguyen P.V., Pregitzer K.S.: Effects of irrigation and coppicing on above-ground growth, physiology and fine root-dynamics of two field-grown hybrid poplar clones.–Forest Ecol. Manag. 80: 163–174, 1996.CrossRefGoogle Scholar
  17. Earl A.M., Losick R., Kolter R.: Ecology and genomics of Bacillus subtilis.–Trends Microbiol. 16: 269–275, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Emmert E.A.B., Handelsman J.: Biocontrol of plant disease: A Gram-positive perspective.–FEMS Microbiol. Lett. 171: 1–9, 1999.CrossRefPubMedGoogle Scholar
  19. Esitken A., Karlidag H., Ercisli S. et al.: Effects of foliar application of Bacillus subtilis OSU-142 on the yield, growth and control of shot-hole disease (Coryneum blight) of Apricot.–Gartenbauwissenschaft 67: 139–142, 2002.Google Scholar
  20. Gordon J.C., Promnitz L.C.: Photosynthetic and enzymatic criteria for the early selection of fast-growing Populus clones.–In: Cannell M.G.R, Last F.T. (ed.): Tree Physiology and Yield Improvement-Carbon Fixation Efficiency. Pp. 79–97. New York Academic Press, New York 1976.Google Scholar
  21. Han H.S., Lee K.D.: Plant growth promoting rhizobacteria effect on antioxidant status, photosynthesis, mineral uptake and growth of lettuce under soil salinity.–Res. J. Agric. Biol. Sci. 1: 210–215, 2005.Google Scholar
  22. Han M.H.: [Effect of Bacillus subtilis JS on the Growth Promotion and the Tolerance Induction to a Biotic Stress in Plants.]–Dissertation, University of Seoul, Seoul 2014. [In Korean]Google Scholar
  23. Han Q.Q., Lü X.P., Bai J.P. et al.: Beneficial soil bacterium Bacillus subtilis (GB03) augments salt tolerance of white clover.–Front. Plant Sci. 5: 1–8, 2014.Google Scholar
  24. Hanson W.C.: The photometric determination of phosphorus in fertilizers using the phosphovanadomolybdate complex.–J. Sci. Food Agric. 1: 172–173, 1950.CrossRefGoogle Scholar
  25. Heidari M., Mousavinik S.M., Golpayegani A.: Plant growth promoting rhizobacteria (PGPR) effect on physiological parameters and mineral uptake in basil (Ociumum basilicm L.) under water stress.–ARPN J. Agr. Biol. Sci. 6: 6–11, 2011.Google Scholar
  26. Hartmann A., Schmid M., van Tuinen D. et al.: Plant-driven selection of microbes.–Plant Soil 321: 235–257, 2009.CrossRefGoogle Scholar
  27. Hernandez V., López A., Hellín P. et al.: Functional quality of lettuce treated with growth promoting bacteria and different nitrogen doses.–Int. Con. Agr. Eng. 542: 1, 2014.Google Scholar
  28. Hirata H.: [Plant Nutritional Experimental Method.] Pp. 52–55. Hakuyusha, Tokyo 1990. [In Japanese]Google Scholar
  29. Ibrahim L., Proe M.F., Cameron A.D.: Main effects of nitrogen supply and drought stress upon whole-plant carbon allocation in poplar.–Can. J. Forest Res. 27: 1413–1419, 1997.CrossRefGoogle Scholar
  30. Jang H.S.: [Effect of Bacillus subtilis JS on the Salt and Drought Stress of Ricinus communis L.]–Dissertation. Dongguk University, Dongguk 2015. [In Korean]Google Scholar
  31. Joslin J.D., Henderson G.S.: The determination of percentages of living tissue in woody fine root samples using triphenyltetrazolium chloride.–Forest Sci. 30: 965–970, 1984.Google Scholar
  32. Karami Chame S., Khalil-Tahmasbi B., ShahMahmoodi P. et al.: Effects of salinity stress, salicylic acid and Pseudomonas on the physiological characteristics and yield of seed beans (Phaseolus vulgaris).–Sci. Agri. 14: 234–238, 2016.Google Scholar
  33. Khan Z.U., McNeil D.L., Samad A.: Root pruning reduces the vegetative and reproductive growth of apple trees growing under an ultra high density planting system.–Sci. Hortic.-Amsterdam 77: 165–176, 1998.CrossRefGoogle Scholar
  34. Kim H.C., Yeo J.K., Koo Y.B. et al.: [Growth and biomass production of fast growing tree species treated with slurry composting and biofiltration liquid fertilizer.]–Korean J. Soil Sci. Fert. 44: 206–214, 2011. [In Korean]CrossRefGoogle Scholar
  35. Kim J.S., Lee J., Lee C.H. et al.: Activation of pathogenesisrelated genes by the rhizobacterium, Bacillus sp. JS, which induces systemic resistance in tobacco plants.–Plant Pathol. J. 31: 195–201, 2015a.Google Scholar
  36. Kim J.S., Lee J., Seo S.G. et al.: Gene expression profile affected by volatiles of new plant growth promoting rhizobacteria, Bacillus subtilis strain JS, in tobacco.–Genes Genom. 37: 387–397, 2015b.CrossRefGoogle Scholar
  37. Kloepper J.W., Ryu C.M., Zhang S.: Induced systemic resistance and promotion of plant growth by Bacillus spp.–Phytopathology 94: 1259–1266, 2004.CrossRefPubMedGoogle Scholar
  38. Kochot C.K., Golabale S.B., Purohit, A.: A Textbook of Pharmacognosy. Pp. 17–18. Nirali Prakashan, Pune 1998.Google Scholar
  39. Ku S.B., Edwards G.E., Tanner C.B.: Effects of light, carbon dioxide, and temperature on photosynthesis, oxygen inhibition of photosynthesis, and transpiration in Solanum tuberosum.–Plant Physiol. 59: 868–872, 1977.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kunst F., Ogasawara N., Moszer I. et al.: The complete genome sequence of the Gram-positive bacterium Bacillus subtilis.–Nature 390: 249–256, 1997.CrossRefPubMedGoogle Scholar
  41. Lassheikki M., Puttonen P., Räsänen P.K.: Planting performance potential of Pinus sylvestris seedlings as evaluated by root growth capacity and triphenyl tetrazolium chloride reduction method.–Scand. J. Forest Res. 6: 91–104, 1991.CrossRefGoogle Scholar
  42. Lee Y.S., Park D.J., Kim J.H. et al.: [Growth promotion of lettuce by biofertilizer, BIOACTIVE, prepared from Bacillus subtilis HR-1019 and N-acetyl-thioproline.]–J. Life Sci. 23: 79–83, 2013. [In Korean]CrossRefGoogle Scholar
  43. Lefebvre S., Lawson T., Zakhleniuk O.V. et al.: Increased sedoheptulose-1,7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development.–Plant Physiol. 138: 451–460, 2005.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Leister D.: Genomics-based dissection of the cross-talk of chloroplasts with the nucleus and mitochondria in Arabidopsis.–Gene 354: 110–116, 2005.CrossRefPubMedGoogle Scholar
  45. Lenin G., Jayanthi M.: Efficiency of plant growth promoting rhizobacteria (PGPR) on enhancement of growth, yield and nutrient content of Catharanthus roseus.–Int. J. Res. Pure. Appl. Microbiol. 2: 37–42, 2012.Google Scholar
  46. Li Y., Xu S., Gao J. et al.: Bacillus subtilis-regulation of stomatal movement and instantaneous water use efficiency in Vicia faba.–Plant Growth Regul. 78: 43–55, 2016.CrossRefGoogle Scholar
  47. Lima J.D., Mosquim P.R., Da Matta F.M.: Leaf gas exchange and chlorophyll fluorescence parameters in Phaseolus vulgaris as affected by nitrogen and phosphorus deficiency.–Photosynthetica 37: 113–121, 1999.CrossRefGoogle Scholar
  48. Lindström A., Nyström C.: Seasonal variation in root hardiness in container grown Scots pine, Norway spruce, and Lodgepole pine seedlings.–Can. J. Forest Res. 17: 787–793, 1987.CrossRefGoogle Scholar
  49. Lucy M., Reed E., Glick B.R.: Application of free living plant growth-promoting rhizobacteria.–Antonie van Leeuw. 86: 1–25, 2004.CrossRefGoogle Scholar
  50. Makkonen K., Helmisaari H.S.: Seasonal and yearly variations of fine-root biomass and necromass in a Scots pine (Pinus sylvestris L.) stand.–Forest Ecol. Manage. 102: 283–290, 1998.CrossRefGoogle Scholar
  51. Mathivanan S., Chidambaram A.A., Robert, G.A. et al.: Impact of PGPR inoculation on photosynthetic pigment and protein contents in Arachis hypogaea L.–J. Sci. Agr. 1: 29–36, 2017.Google Scholar
  52. Misson L., Gershenson A., Tang J.W. et al.: Influences of canopy photosynthesis and summer rain pulses on root dynamics and soil respiration in a young ponderosa pine forest.–Tree Physiol. 26: 833–844, 2006.CrossRefPubMedGoogle Scholar
  53. Miyagawa Y., Tamoi M., Shigeoka S.: Over expression of a cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth.–Nat. Biotechnol. 19: 965–969, 2001.CrossRefPubMedGoogle Scholar
  54. Mohamed H.I., Gomaa E.Z.: Effect of plant growth promoting Bacillus subtilis and Psedomonas fluorescens on growth and pigment composition of radish plants (Raphanus sativus) under NaCl stress.–Photosynthetica 50: 263–272, 2012.CrossRefGoogle Scholar
  55. Netto A.T., Campostrini E., de Oliveira J.G. et al..: Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves.–Sci. Hortic.-Amsterdam 104: 199–209, 2005.CrossRefGoogle Scholar
  56. Ni B.R., Pallardy S.G.: Response of gas exchange to water stress in seedlings of woody angiosperms.–Tree Physiol. 8: 1–9, 1991.CrossRefPubMedGoogle Scholar
  57. Park P.S., Kim K.Y., Jang W.S. et al.: [Comparison of seedling survival rate and growth among 8 different tree species in Seosan reclamation area.]–J. Korean For. Soc. 98: 496–503, 2009. [In Korean]Google Scholar
  58. Pichersky E., Hoffman N.E., Malik V.S. et al.: The tomato Cab-4 and Can-5 genes encode a second type of CAB polypeptides localized in photosystem II.–Plant Mol. Biol. 9: 109–120, 1987.CrossRefPubMedGoogle Scholar
  59. Poorter H., Remkes C.: Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate.–Oecologia 83: 553–559, 1990.CrossRefPubMedGoogle Scholar
  60. Richter A.K.: Fine Root Growth and Vitality of European Beech in Acid Forest Soils with a Low Base Saturation.–Dissertation, Swiss Federal Institute of Technology, Zurich 2007.Google Scholar
  61. Ryu C.M., Farag M.A., Hu C.H. et al.: Bacterial volatiles promote growth in Arabidopsis.–P. Natl. Acad. Sci. USA 100: 4927–4932, 2003.CrossRefGoogle Scholar
  62. Salisbury F.B., Ross C.W.: Plant Physiology. Pp. 329–407. Wadsworth, Belmont 1992.Google Scholar
  63. Seo Y.K.: [The Effect of Bacillus subtilis JS (PGPR) on the Growth of Several Indoor Plants Foliar Application.]–Dissertation, University of Seoul, Seoul 2015. [In Korean]Google Scholar
  64. Shin H.N., Kim H.C., Kang K.S. et al.: [Differences in biomass production by rotation interval and planting density in Short-Rotation Forestry.]–P. Annu. Meet. Korean For. Soc. 2012: 43–45, 2012. [In Korean]Google Scholar
  65. Singh N., Pandey P., Dubey R.C. et al.: Biological control of root rot fungus Macrophomina phaseolina and growth enhancement of Pinus roxburghii (Sarg.) by rhizosphere competent Bacillus subtilis BN1.–World J. Microbiol. Biotechnol. 24: 1669–1679, 2008.CrossRefGoogle Scholar
  66. Song J.Y., Kim H.A., Kim J.S. et al.: Genome sequence of the plant growth-promoting rhizobacterium Bacillus sp. Strain JS.–J. Bacteriol. 194: 3760–3761, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Sturite I., Henriksen T.M., Breland T.A.: Distinguishing between metabolically active and inactive roots by combined staining with 2,3, 5-triphenyltetrazolium chloride and image colour analysis.–Plant Soil 271: 75–82, 2005.CrossRefGoogle Scholar
  68. Tolentino Jr E.L., Lee D.K., Woo S.Y. et al.: Photosynthesis, transpiration and water use efficiency of six (6) indigenous tree seedlings for two (2) years in a nursery in the Philippines.–Forest Sci. Technol. 2: 18–26, 2006.CrossRefGoogle Scholar
  69. Utkhede R.S., Smith E.M.: Promotion of apple tree growth and fruit production by the EBW-4 strain of Bacillus subtilis in apple replant disease soil.–Can. J. Microbiol. 38: 1270–1273, 1992.CrossRefPubMedGoogle Scholar
  70. Vafadar F., Amooaghaie R., Otroshy M.: Effects of plantgrowth-promoting rhizobacteria and arbuscular mycorrhizal fungus on plant growth, stevioside, NPK, and chlorophyll content of Stevia rebaudiana.–J. Plant Interact. 9: 128–136, 2014.CrossRefGoogle Scholar
  71. Vessey J.K.: Plant growth promoting rhizobacteria as biofertilizers.–Plant Soil 255: 571–586, 2003.CrossRefGoogle Scholar
  72. Weih M., Roennberg-Wästljung A: Shoot biomass growth is related to the vertical leaf nitrogen gradient in Salix canopies.–Tree Physiol. 27: 1551–1559, 2007.CrossRefPubMedGoogle Scholar
  73. Wilson K.B., Baldocchi D.D., Hanson P.J.: Spatial and seasonal variability of photosynthetic parameters and their relationship to leaf nitrogen in a deciduous forest.–Tree Physiol. 20: 565–578, 2000.CrossRefPubMedGoogle Scholar
  74. Wright J.P., Jones C.G.: The concept of organisms as ecosystem engineers ten years on: Progress, limitations, and challenges.–BioScience 56: 203–209, 2006.CrossRefGoogle Scholar
  75. Xie X., Zhang H., Paré P.: Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis (GB03).–Plant Signal Bahav. 4: 948–953, 2009.CrossRefGoogle Scholar
  76. Xu L.K., Hsiao T.C.: Predicted versus measured photosynthetic water-use efficiency of crop stands under dynamically changing field environments.–J. Exp. Bot. 55: 2395–2411, 2004.CrossRefPubMedGoogle Scholar
  77. Yadav R.L., Dwivedi B.S., Prasad K. et al.: Yield trends and changes in soil organic-C and available NPK in a long-term rice-wheat system under integrated use of manure and fertilizers.–Field Crops Res. 68: 219–246, 2000.CrossRefGoogle Scholar
  78. Yeo J.K., Park J.H., Koo Y.B. et al.: [Effects of NaCl concentration on the growth of native willow species collected in a coastal reclaimed land.]–Korean J. Soil Sci. Fert. 43: 124–131, 2010. [In Korean]Google Scholar
  79. Yoshida O.K.: Analytical method of root activity.–J. Japan Soc. Soil Sci. Fert. 37: 63–68, 1966.Google Scholar
  80. Zhang H., Kim M.S., Krishnamachari V. et al.: Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis.–Planta 226: 839–851, 2007.CrossRefPubMedGoogle Scholar
  81. Zou C., Li Z., Yu D.: Bacillus megaterium strain XTBG34 promotes plant growth by producing 2-pentylfuran.–J. Microbiol. 48: 460–466, 2010.CrossRefPubMedGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2018

Authors and Affiliations

  • J. H. Jang
    • 1
  • S. -H. Kim
    • 1
  • I. Khaine
    • 1
  • M. J. Kwak
    • 1
  • H. K. Lee
    • 1
  • T. Y. Lee
    • 1
  • W. Y. Lee
    • 2
  • S. Y. Woo
    • 1
  1. 1.Department of Environmental HorticultureUniversity of SeoulSeoulKorea
  2. 2.Division of Forest Tree ImprovementNational Institute of Forest ScienceSuwonKorea

Personalised recommendations