Skip to main content
Log in

Photosynthetic efficiency in sun and shade plants

  • Review
  • Published:
Photosynthetica

Abstract

Photosynthesis is amongst the plant cell functions that are highly sensitive to any type of changes. Sun and shade conditions are prevalent in fields as well as dense forests. Dense forests face extreme sun and shade conditions, and plants adapt themselves accordingly. Sun flecks cause changes in plant metabolic processes. In the field, plants have to face high light intensity and survive under such conditions. Sun and shade type of plants develops a respective type of chloroplasts which help plants to survive and perform photosynthesis under adverse conditions. PSII and Rubisco behave differently under different sun and shade conditions. In this review, morphological, physiological, and biochemical changes under conditions of sun (high light) and shade (low light) on the process of photosynthesis, as well as the tolerance and adaptive mechanisms involved for the same, were summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABS:

absorption

AOX:

alternative oxidase

APX:

ascorbate peroxidise

CAT:

catalase

CET:

cyclic electron flow

Chl:

chlorophyll

CP:

chloroplast protein

Cyt b/f :

cytochrome b/f

DHA:

dehydroascorbate

DHAR:

dehydroascorbate reductase

ETR:

electron rate

F0 :

minimal fluorescence

Fm :

maximal fluorescence

FQR:

ferredoxin-plastoquinone reductase

g s :

stomatal conductance

HL:

high light

LCP:

light-compensation point

LL:

low light

LSP:

light-saturation point

LTR:

long-term response

MDA:

malondialdehyde

MDAR:

monodehydroascorbate reductase

NPQ:

nonphotochemical quenching

OJ, JI, IP:

phases of Chl a fluorescence induction curve

PET:

photosynthetic electron transport

pgr :

proton gradient regulation mutant

pLHCII:

phosphorylated LHCII

P N :

net CO2 assimilation rates

POD:

peroxidase

PQH2 :

plastoquinol

qP :

proportion of open PSII reaction centers

RC:

reaction center

ROS:

reactive oxygen species

SS:

soluble sugars

SOD:

superoxide dismutase

VDE:

violaxanthin de-epoxidase

VJ :

variable fluorescence at 2 ms

φPo :

maximum quantum yield of PSII photochemistry

ΨET2o :

probability of electron transport from reduced QA to QB

ΨRE1o :

probability of electron transport from the PSII to the PSI acceptor side

ZEP:

zeaxanthin epoxidase

References

  • Adir N., Zer H., Shochat S. et al.: Photoinhibition-a historical perspective.–Photosynth. Res. 76: 343–370, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Allahverdiyeva Y., Suorsa M., Tikkanen M. et al.: Photoprotection of photosystems in fluctuating light intensities.–J. Exp. Bot. 66: 2427–2436, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Allen J.F.: Botany. State transitions-a question of balance.–Science 299: 1530–1532, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Anderson J.M.: Photoregulation of the composition, function and structure of thylakoid membranes.–Ann. Rev. Plant Physio. 37: 93–136, 1986.

    Article  CAS  Google Scholar 

  • Anderson J.M., Aro E.M.: Grana stacking and protection of photosystem II in thylakoid membranes of higher plant leaves under sustained high irradiance: An hypothesis.–Photosynth. Res. 41: 315–326, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Atanasova L., Stefanov D., Yordanov I. et al.: Comparative characteristics of growth and photosynthesis of sun and shade leaves from normal and pendulum walnut (Juglans regia L.) trees.–Photosynthetica 41: 289–292, 2003.

    Article  CAS  Google Scholar 

  • Bailey S., Walters R.G., Jansson S. et al.: Acclimation of Arabidopsis thaliana to light environment: the existence of separate low light and high light responses.–Planta 213: 794–801, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Bailey S., Horton P., Walters R.G.: Acclimation of Arabidopsis thaliana to the light environment: the relationship between photosynthetic function and chloroplast composition.–Planta 218: 793–802, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Bellafiore S., Barneche F., Peltier G. et al.: State transitions and light adaptation require chloroplast thylakoid protein kinase STN7.–Nature 433: 892–895, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Björkman O., Powles S.B.: Leaf movement in the shade species Oxalis oregana. I. Response to light level and light quality.–Carnegie I. Wash. 80: 59–62, 1981.

    Google Scholar 

  • Björkman O.: Responses to different quantum flux densities.–In: Lange O.L., Nobel P.S., Osmond C.B., Zeigler H. (ed.): Encyclopedia of Plant Physiology, New Series. Physiological Plant Ecology5. Pp. 47–107. Springer, Berlin–New York 1981.

    Google Scholar 

  • Boardman N.K.: Comparative photosynthesis of sun and shade plants.–Annu. Rev. Plant Physio. 28: 355–377, 1977.

    Article  CAS  Google Scholar 

  • Bonardi V., Pesaresi P., Becker T. et al.: Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases.–Nature 437: 1179–1182, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Bräutigam K., Dietzel L., Kleine T. et al.: Dynamic plastid redox signals integrate gene expression and metabolism to induce distinct metabolic states in photosynthetic acclimation in Arabidopsis.–Plant Cell 21: 2715–2732, 20

    Article  PubMed  PubMed Central  Google Scholar 

  • Brestic M., Cornic G., Fryer M. et al.: Does photorespiration protect the photosynthetic apparatus in French bean leaves from photoinhibition during drought stress?–Planta 196: 450–457, 1995.

    Article  CAS  Google Scholar 

  • Brugnoli E., Björkman O.: Chloroplast movements in leaves: influence on chlorophyll fluorescence and measurements of light-induced absorbance changes related to ΔpH and zeaxanthin formation.–Photosynth. Res. 32: 23–35, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Casal J.J.: Photoreceptor signaling networks in plant responses to shade.–Plant Biol. 64: 403–427, 2013.

    Article  CAS  Google Scholar 

  • Chow W.S., Anderson J.M.: Photosynthetic responses of Pisum sativum to an increase in irradiance during growth. II. Thylakoid membrane components.–Aust. J. Plant Physiol. 14: 9–19, 1987.

    Article  CAS  Google Scholar 

  • Cuzzuol G.R.F., Milanez C.R.D.: Morphological and physiological adjustments in juvenile tropical trees under contrasting sunlight irradiance.–In: Najafpour M.M. (ed.): Advances in Photosynthesis. Fundamental Aspects. Pp. 501–518. In Tech Croatia, Rijeka 2012.

    Google Scholar 

  • DalCorso G., Pesaresi P., Masiero S. et al: A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis.–Cell 132: 273–285, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams B., Adams W.W. III: Carotenoid composition in sun and shade leaves of plants with different life forms.–Plant Cell Environ. 15: 411–419, 1992.

    Article  CAS  Google Scholar 

  • Demmig-Adams B., Moeller D.L., Logan B.A. et al.: Positive correlation between levels of retained zeaxanthin+ anthrexanthin and degree of photoinhibition in shade leaves of Schefflera arboricola.–Planta 205: 367–374, 19

    Article  CAS  Google Scholar 

  • Deng Y.M., Chen S.M., Chen F.D. et al.: The embryo rescue derived intergeneric hybrid between Chrysanthemum and Ajania przewalskii shows enhanced cold tolerance.–Plant Cell Rep. 30: 2177–2186, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Dietzel L., Bräutigam K., Pfannschmidt T.: Photosynthetic acclimation: state transitions and adjustment of photosystem stoichiometry-functional relationships between short-term and long-term light quality acclimation in plants.–FEBS J. 275: 1080–1088, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Dong C.J., Wang X.L., Shang Q.M.: Salicylic acid regulates sugar metabolism that confers tolerance to salinity stress in cucumber seedlings.–Sci. Hortic.-Amsterdam 129: 629–636, 2011.

    Article  CAS  Google Scholar 

  • Farquhar G.D., Sharkey T.D.: Stomatal conductance and photosynthesis.–Annu. Rev. Plant Physiol. 33: 317–345, 1982.

    Article  CAS  Google Scholar 

  • Foyer C.H., Noctor G.: Oxygen processing in photosynthesis: regulation and signaling.–New Phytol. 146: 359–388, 2000.

    Article  CAS  Google Scholar 

  • Ganeteg U., Külheim C., Andersson J. et al.: Is each light harvesting complex protein important for plant fitness?–Plant Physiol. 134: 502–509, 2004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gonçalves J.F.D.C., Marenco R.A., Vieira G.: Concentration of photosynthetic pigments and chlorophyll fluorescence of mahogany and tonka bean under two light environments.–R. Bras. Fisiol. Veg. 13: 149–157, 2001.

    Article  Google Scholar 

  • Grieco M., Tikkanen M., Paakkarinen V. et al.: Steady-state phosphorylation of light-harvesting complex II proteins preserves photosystem I under fluctuating white light.–Plant Physiol. 160: 1896–1910, 2012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo H.X., Liu W.Q., Shi Y.C.: Effects of different nitrogen forms on photosynthetic rate and the chlorophyll fluorescence induction kinetics of flue-cured tobacco.–Photosynthetica 44: 140–142, 2006.

    Article  CAS  Google Scholar 

  • Hertle A.P., Blunder T., Wunder T. et al.: PGRL1 is the elusive ferredoxin-plastoquinone reductase in photosynthetic cyclic electron flow.–Mol. Cell 49: 511–523, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Hirth M., Dietzel L., Steiner S. et al.: Photosynthetic acclimation responses of maize seedlings grown under artificial laboratory light gradients mimicking natural canopy conditions.–Front. Plant Sci. 4: 1–12, 2013.

    Article  Google Scholar 

  • Hogewoning S.W., Wientjes E., Douwstra P.: Photosynthetic quantum yield dynamics: from photosystems to leaves.–Plant Cell 24: 1921–1935, 2012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jia H., Liggins J.R., Chow W.S.: Acclimation of leaves to low light produces large grana: the origin of the predominant attractive force at work.–Phil.T. Roy. Soc. B 367: 3494–3502, 2012.

    Article  CAS  Google Scholar 

  • Jiang C.D., Wang X., Gao H.Y. et al.: Systemic regulation of leaf anatomical structure, photosynthetic performance, and highlight tolerance in sorghum.–Plant Physiol. 155: 1416–1424, 2011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joliot P., Johnson G.N.: Regulation of cyclic and linear electron flow in higher plants.–P. Natl. Acad. Sci. USA 108: 13317–13322, 2011.

    Article  Google Scholar 

  • Kalaji H.M., Jajoo A., Oukarroum A.: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions.–Acta Physiol Plant. 38: 102, 2016.

    Article  CAS  Google Scholar 

  • Kobza J., Seemann J.R.: Mechanisms for light-dependent regulation of ribulose-1,5-bisphosphate carboxylase activity and photosynthesis in intact leaves.–P. Natl. Acad. Sci. USA 85: 3815–3819, 1988.

    Article  CAS  Google Scholar 

  • Kono M., Noguchi K., Terashima I.: Roles of the cyclic electron flow around PSI (CEF-PSI) and O2-dependent alternative pathways in regulation of the photosynthetic electron flow in short-term fluctuating light in Arabidopsis thaliana.–Plant Cell Physiol. 55: 990–1004, 20

    Article  PubMed  CAS  Google Scholar 

  • Kouřil R., Wientjes E., Bultema J.B. et al.: High-light vs. lowlight: Effect of light acclimation on photosystem II composition and organization in Arabidopsis thaliana.–Biochim. Biophys. Acta 1827: 411–419, 20

    Article  PubMed  CAS  Google Scholar 

  • Kromdijk J., Głowacka K., Leonelli L. et al.: Improving photosynthesis and crop productivity by accelerating recovery from photoprotection.–Science 354: 857–861, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Kurepin L.V., Pharis R.P.: Light signaling and the phytohormonal regulation of shoot growth.–Plant Sci. 229: 280–289, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Kyle D.J., Ohad I., Arntzen C.J.: Membrane protein damage and repair. I. Selective loss of quione protein function in chloroplast membranes.–P. Natl. Acad. Sci. USA 81: 4070–4074, 1984.

    Article  CAS  Google Scholar 

  • Leong T.Y., Anderson J.M.: Adaptation of the thylakoid membranes of pea chloroplasts to light intensities I. Study on the distribution of chlorophyll-protein complexes.–Photosynth. Res. 5: 105–115, 1984a.

    Article  PubMed  CAS  Google Scholar 

  • Leong T.Y., Anderson J.M.: Adaptation of the thylakoid membranes of pea chloroplasts to light intensities II. Regulation of electron transport capacities, electron carriers, coupling factor (CF1) activity and rates of photosynthesis.–Photosynth. Res. 5: 117–128, 1984b.

    Article  PubMed  CAS  Google Scholar 

  • Leong T.Y., Anderson J.M.: Light-quality and irradiance adaptation of the composition and function of pea thylakoid membranes.–BBA-Bioenergetics 850: 57–63, 1986.

    Article  CAS  Google Scholar 

  • Li Q., Deng M., Xiong Y. et al.: Morphological and photosynthetic response to high and low irradiance of Aeschynanthus longicaulis.–Sci. World J. 2014: 347461, 20

    Google Scholar 

  • Li T., Liu L.N., Jiang C.D. et al.: Effects of mutual shading on the regulation of photosynthesis in field grown sorghum.–J. Photoch. Photobio. B 137: 31–38, 2014.

    Article  CAS  Google Scholar 

  • Lichtenthaler H.K., Buschmann C., Döll M. et al.: Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves.–Photosynth. Res. 2: 115–141, 1981.

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler H.K., Meier D., Buschmann C.: Development of chloroplasts at high and low light quanta fluence rates.–Israel J. Bot. 33: 185–194, 1984.

    CAS  Google Scholar 

  • Lunde C., Jensen P.E., Haldrup A. et al.: The PSI-H subunit of photosystem I is essential for state transitions in plant photosynthesis.–Nature 408: 613–615, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Marchiori P.E.R., Machado E.C., Ribeiro R.V.: Photosynthetic limitations imposed by self-shading in field-grown sugarcane varieties.–Field Crop. Res. 155: 30–37, 2014.

    Article  Google Scholar 

  • Martins S.C.V., Detmann K.C., Reis J.V.D. et al.: Photosynthetic induction and activity of enzymes related to carbon metabolism: insights into the varying net photosynthesis rates of coffee sun and shade leaves.–Theor. Exp. Plant Physiol. 25: 62–69, 2013.

    Article  CAS  Google Scholar 

  • Martins S.C.V., Galmés J., Cavatte P.C. et al.: Understanding the low photosynthetic rates of sun and shade coffee leaves: bridging the gap on the relative roles of hydraulic, diffusive and biochemical constraints to photosynthesis.–PLoS ONE 9: e95571, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maxwell K., Johnson G.N.: Chlorophyll fluorescence–a practical guide.–J. Exp. Bot. 51: 659–668, 2000.

    Article  CAS  Google Scholar 

  • Meier D., Lichtenthaler H.K.: Ultrastructural development of chloroplasts in radish seedlings grown at high and low light conditions and in the presence of the herbicide bentazon.–Protoplasma 107: 195–207, 1981.

    Article  CAS  Google Scholar 

  • Melis A.: Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo?–Trends Plant Sci. 4: 130–135, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Mishra Y., Jänkänpää J.H., Kiss A.Z. et al.: Arabidopsis plants grown in the field and climate chambers significantly differ in leaf morphology and photosystem components.–BMC Plant Biol. 12: 6, 2012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Müller P., Li X.P., Niyogi K.K.: Non-photochemical quenching. A response to excess light energy.–Plant Physiol. 125: 1558–1566, 2001.

    Article  PubMed  PubMed Central  Google Scholar 

  • Munekage Y., Hojo M., Meurer J. et al.: PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis.–Cell 110: 361–371, 20

    Article  PubMed  CAS  Google Scholar 

  • Munekage Y., Hashimoto M., Miyake C. et al.: Cyclic electron flow around photosystem I is essential for photosynthesis.–Nature 429: 579–582, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Muraoka H., Tang Y.H., Terashima I. et al.: Contribution of diffusional limitation, photo inhibition and photorespiration to midday depression of photosynthesis in Arisaema heterophyllum in natural high light.–Plant Cell Environ. 23: 235–250, 2000.

    Article  CAS  Google Scholar 

  • Nandha B., Finazzi G., Joliot P. et al.: The role of PGR5 in the redox poising of photosynthetic electron transport.–Biochim. Biophys. Acta 1767: 1252–1259, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Niinemets U.: Photosynthesis and resource distribution through plant canopies.–Plant Cell Environ. 30: 1052–1071, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama Y., Yamamoto H., Allakhverdiev S.I. et al.: Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery.–EMBO J. 20: 5587–5594, 2001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ojanguren C.T., Goulden M.L.: Photosynthetic acclimation within individual Typha latifolia leaf segments.–Aquat. Bot. 111: 54–61, 2013.

    Article  Google Scholar 

  • Oquist G., Chow W.S., Anderson J.M.: Photoinhibition of photosynthesis represents a mechanism for the long-term regulation of photosynthesis.–Planta 186: 450–460, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Osmond C.B.: What is photoinhibition? Some insights from comparisons of shade and sun plants.–In: Baker N.R., Bowyer J.R. (ed.): Photoinhibition of Photosynthesis: from Molecular Mechanisms to the Field. Pp. 1–24. BIOS Sci. Publ. Ltd, Oxford, UK 1994.

    Google Scholar 

  • Park Y.I., Chow W.S., Anderson J.M. et al.: Differential susceptibility of photosystem II to light stress in lightacclimated pea leaves depends on the capacity for photochemical and non-radiative dissipation of light.–Plant Sci. 115: 137–149, 1996.

    Article  CAS  Google Scholar 

  • Pearcy R.W., Sims D.A.: Photosynthetic acclimation to changing light environments: scaling from the leaf to the whole plant.–In: Caldwell M.M., Pearcy R.W. (ed.): Exploitation of Environmental Heterogeneity by Plants. Pp. 145–174. Academic Press, San Diego 1994.

    Chapter  Google Scholar 

  • Pesaresi P., Hertle A., Pribil M. et al.: Optimizing photosynthesis under fluctuating light. The role of the Arabidopsis STN7 kinase.–Plant Signal. Behav. 5: 21–25, 2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pfannschmidt T.: Chloroplast redox signals: how photosynthesis controls its own genes.–Trends Plant Sci. 8: 33–41, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Powles S.B.: Photoinhibition of photosynthesis induced by visible light.–Annu. Rev. Plant Physio. 35: 15–44, 1984.

    Article  CAS  Google Scholar 

  • Rintamäki E., Martinsuo P., Pursiheimo S. et al.: Cooperative regulation of light-harvesting complex II phosphorylation via the plastoquinol and ferredoxin-thioredoxin system in chloroplasts.–P. Natl. Acad. Sci. USA 97: 11644–11649, 2000.

    Article  Google Scholar 

  • Robinson S., Lovelock C.E., Osmond C.B.: Wax as a mechanism for protection against photoinhibition–A study of Cotyledon orbiculata.–Plant Biol. 106: 307–312, 19

    CAS  Google Scholar 

  • Rochaix J.D.: Role of thylakoid protein kinases in photosynthetic acclimation.–FEBS Lett. 581: 2768–2775, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Sarijeva G., Knapp M., Lichtenthaler H.K.: Differences in photosynthetic activity, chlorophyll and carotenoid levels, and in chlorophyll fluorescence parameters in green sun and shade leaves of Ginkgo and Fagus.–J. Plant Physiol. 164: 950–955, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Schulze E.D., Lange O.L., Kappen L. et al.: The role of air humidity and leaf temperature in regulating stomatal resistance of Prunus armeniaca L. under desert conditions. II. The significance of leaf water status and internal carbondioxide concentration.–Oecologia 18: 219–233, 1975.

    Article  Google Scholar 

  • Šetlík I., Allakhverdiev S.I., Nedbal L. et al.: Three types of photosystem II photoinactivation. I. Damaging processes on the acceptor side.–Photosynth. Res. 23: 39–48, 1990.

    Article  PubMed  Google Scholar 

  • Shao Q., Wang H., Guo H. et al.: Effects of shade treatments on photosynthetic characteristics, chloroplast ultrastructure, and physiology of Anoectochilus roxburghii.–PLoS ONE 9: e85996, 20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smirnoff N.: Ascorbate biosynthesis and function in photoprotection.–Philos. T. R. Soc. Lond. B 355: 1455–1464, 2000.

    Article  CAS  Google Scholar 

  • Stirbet A., Govindjee: On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: basics and applications of the OJIP fluorescence transient.–J. Photoch. Photobio. B 104: 236–257, 2011.

    Article  CAS  Google Scholar 

  • Strasser R.J., Srivastava A., Govindjee: Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria.–Photochem. Photobiol. 61: 32–42, 1995.

    Article  CAS  Google Scholar 

  • Sugimoto K., Okegawa Y., Tohri A. et al: A single amino acid alteration in PGR5 confers resistance to antimycin A in cyclic electron transport around PSI.–Plant Cell Physiol. 54: 1525–1534, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Suorsa M., Järvi S., Grieco M. et al: PROTON GRADIENT REGULATION5 is essential for proper acclimation of Arabidopsis photosystem I to naturally and artificially fluctuating light conditions.–Plant Cell 24: 2934–2948, 2012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Terashima I.: Anatomy of non-uniform leaf photosynthesis.–Photosynth. Res. 31: 195–212, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Tezara W., Martínez D., Rengifo E. et al.: Photosynthetic responses of the tropical spiny shrub Lycium nodosum (Solanaceae) to drought, soil salinity and saline spray.–Ann. Bot.-London 92: 757–765, 2003.

    Article  CAS  Google Scholar 

  • Thayer S.S., Björkman O.: Leaf xanthophyll content and composition in sun and shade determined by HPLC.–Photosynth. Res. 23: 331–343, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Tikkanen M., Piippo M., Suorsa M. et al.: State transitions revisited: a buffering system for dynamic low light acclimation of Arabidopsis.–Plant Mol. Biol. 62: 779–793, 20

    Article  PubMed  CAS  Google Scholar 

  • Tikkanen M., Grieco M., Kangasjärvi S. et al.: Thylakoid protein phosphorylation in higher plant chloroplasts optimizes electron transfer under fluctuating light.–Plant Physiol. 152: 723–735, 2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Timperio A.M., Gevi F., Ceci L.R. et al.: Acclimation to intense light implies changes at the level of trimeric subunits involved in the structural organization of the main light-harvesting complex of photosystem II (LHCII) and their isoforms.–Plant Physiol. Bioch. 50: 8–14, 2012.

    Article  CAS  Google Scholar 

  • Vass I.: Molecular mechanisms of photodamage in the Photosystem II complex.–Biochim. Biophys. Acta 1817: 209–217, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Valladares F., Niinemets U.: Shade tolerance, a key plant feature of complex nature and consequence.–Ann. Rev. Ecol. Evol. Syst. 39: 237–257, 2008.

    Article  Google Scholar 

  • Vogelmann T.C., Martin G.: The functional-significance of palisade tissue-penetration of directional versus diffuse light.–Plant Cell Environ. 16: 65–72, 1993.

    Article  Google Scholar 

  • Walters R.G.: Towards an understanding of photosynthesis acclimation.–J. Exp. Bot. 56: 435–447, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Way D.A., Pearcy R.W.: Sunflecks in trees and forests: from photosynthetic physiology to global change biology.–Tree Physiol. 32: 1066–1081, 2012.

    Article  PubMed  Google Scholar 

  • Wollman F.A.: State transitions reveal the dynamics and flexibility of the photosynthetic apparatus.–EMBO J. 20: 3623–30, 2001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamori W., Makino A., Shikanai T.: A physiological role of cyclic electron transport around photosystem I in sustaining photosynthesis under fluctuating light in rice.–Nat. Sci. Rep. 6: 20147, 2016.

    Article  CAS  Google Scholar 

  • Zivcak M., Brestic M., Kalaji H.M. et al.: Photosynthetic responses of sun-and shade-grown barley leaves to high light: is the lower PSII connectivity in shade leaves associated with protection against excess of light?–Photosynth. Res. 119: 339–354, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Jajoo.

Additional information

Acknowledgements: S. Mathur thanks University Grant Commission, (UGC), India for Post Doctoral Fellowship for Women (PDFWM- 2014-15-GEMAD-23945). L. Jain thanks Council of Science and Industrial Research (CSIR), India, for CSIR-Junior Research Fellowship (09/301(0130)/2016-EMRI).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathur, S., Jain, L. & Jajoo, A. Photosynthetic efficiency in sun and shade plants. Photosynthetica 56, 354–365 (2018). https://doi.org/10.1007/s11099-018-0767-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-018-0767-y

Additional key words

Navigation