Skip to main content

Advertisement

Log in

Regulating photoprotection improves photosynthetic growth and biomass production in QC-site mutant cells of the cyanobacterium Synechocystis sp. PCC 6803

  • Published:
Photosynthetica

Abstract

We characterized the photosynthetic growth of wild-type (WT) and QC-site mutant cells of the cyanobacterium Synechocystis sp. PCC 6803 grown in a photobioreactor under medium-intensity [~70 μmol(photon) m–2 s–1] and high-intensity [~200 μmol(photon) m–2 s–1] light conditions. Photosynthetic growth rate (the exponential phase) increased about 1.1–1.2 fold for the A16FJ, S28Aβ, and V32Fβ mutant compared with WT cells under medium-intensity light and about 1.2–1.3 fold under high-intensity light. Biomass production increased about 17–20% for A16FJ and S28Aβ mutant cells as compared with WT cells under medium-intensity light and about 14–17% for A16FJ and V32Fβ mutant cells under high-intensity light. The greater photosynthetic growth rate and biomass production of these QC-site mutant cells could be attributed to the increased photosynthesis efficiency and decreased dissipation of wasteful energy from phycobilisomes in mutants vs. WT cells. Our results support that manipulation of photoprotection may improve photosynthesis and biomass production of photosynthetic organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Chl:

chlorophyll

Cyt:

cytochrome

Fm :

the maximal fluorescence yield

Fm,dark :

the maximal fluorescence yield in the dark

F0 :

the dark fluorescence yield

HP:

high- potential form

IP:

intermedium potential form

LP:

low-potential form

NPQ:

nonphotochemical fluorescence quenching

OCP:

orange carotenoid proteins

PQ:

plastoquinone

WT:

wild-type control Synechocystis strain constructed in the same manner as site-directed mutants but with no mutation

References

  • Al-Haj L., Lui Y.T., Abed R.M. et al.: Cyanobacteria as chassis for industrial biotechnology: progress and prospects.–Life (Basel) 6: E42, 2016.

    Google Scholar 

  • Bondarava N., De Pascalis L., Al-Babili S. et al.: Evidence that cytochrome b559 mediates the oxidation of reduced plasto quinone in the dark.–J. Biol. Chem. 278: 13554–13560, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Bondarava N., Gross C.M., Mubarakshina M. et al.: Putative function of cytochrome b559 as a plastoquinol oxidase.–Physiol. Plantarum 138: 463–473, 2010.

    Article  CAS  Google Scholar 

  • Boulay C., Wilson A., D’Haene S. et al.: Identification of a protein required for recovery of full antenna capacity in OCPrelated photoprotective mechanism in cyanobacteria.–P. Natl. Acad. Sci. USA 107: 11620–11625, 2010.

    Article  Google Scholar 

  • Bruce D., Brimble S., Bryant D.A.: State transitions in a phycobilisome-less mutant of the cyanobacterium Synechococcus sp. PCC 7002.–Biochim. Biophys. Acta 974: 66–73, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Chiu Y.F., Chen Y.H., Roncel M. et al.: Spectroscopic and functional characterization of cyanobacterium Synechocystis PCC 6803 mutants on the cytoplasmic-side of cytochrome b559 in photosystem II.–Biochim. Biophys. Acta 1827: 507–519, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Chiu Y.F., Lin W.C., Wu C.M. et al.: Identification and characterization of a cytochrome b559 Synechocystis 6803 mutant spontaneously generated from DCMU-inhibited photoheterotrophical growth conditions.–Biochim. Biophys. Acta 1787: 1179–1188, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Chu H.A., Chiu Y.F.: The roles of cytochrome b559 in assembly and photoprotection of photosystem II revealed by site-directed mutagenesis studies.–Front. Plant Sci. 6: 1261, 2015.

    Article  PubMed  Google Scholar 

  • Gao X., Sun T., Pei G. et al.: Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals.–Appl. Microbiol. Biotechnol. 100: 3401–3413, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Guskov A., Kern J., Gabdulkhakov A. et al.: Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride.–Nat. Struct. Mol. Biol. 16: 334–342, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa K., Noguchi T.: Molecular interactions of the quinone electron acceptors QA, QB, and QC in photosystem II as studied by the fragment molecular orbital method.–Photosynth. Res. 120: 113–123, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Huang J.Y., Chiu Y.F., Ortega J.M. et al.: Mutations of cytochrome b559 and psbJ on and near the QC Site in photosystem II influence the regulation of short-term light response and photosynthetic growth of the cyanobacterium Synechocystis sp. PCC 6803.–Biochemistry 55: 2214–2226, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Hung C.H., Huang J.Y., Chiu Y.F. et al.: Site-directed mutagenesis on the heme axial-ligands of cytochrome b559 in photosystem II by using cyanobacteria Synechocystis PCC 6803.–Biochim. Biophys. Acta 1767: 686–693, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Hung C.H., Hwang H.J., Chen Y.H. et al.: Spectroscopic and functional characterizations of cyanobacterium Synechocystis PCC 6803 mutants on and near the heme axial ligand of cytochrome b559 in photosystem II.–J. Biol. Chem. 285: 5653–5663, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Kaminskaya O., Shuvalov V.A., Renger G.: Evidence for a novel quinone-binding site in the photosystem II (PS II) complex that regulates the redox potential of cytochrome b559.–Biochemistry 46: 1091–1105, 200

    Article  PubMed  CAS  Google Scholar 

  • Kaminskaya O., Shuvalov V.A., Renger G.: Two reaction pathways for transformation of high potential cytochrome b559 of PS II into the intermediate potential form.–BBA-Bioenergetics 1767: 550–558, 2007b.

    Article  PubMed  CAS  Google Scholar 

  • Kaminskaya O.P., Shuvalov V.A.: Biphasic reduction of cytochrome b559 by plastoquinol in photosystem II membrane fragments: evidence for two types of cytochrome b559/ plastoquinone redox equilibria.–BBA-Bioenergetics 1827: 471–483, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Kirilovsky D.: Modulating energy arriving at photochemical reaction centers: orange carotenoid protein-related photoprotection and state transitions.–Photosynth. Res. 126: 3–17, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Kirilovsky D., Kerfeld C.A.: Cyanobacterial photoprotection by the orange carotenoid protein.–Nat. Plants 2: 16180, 2016. doi: 10.1038/nplants.2016.180

    Article  PubMed  CAS  Google Scholar 

  • Komenda J., Reisinger V., Müller B.C. et al.: Accumulation of the D2 protein is a key regulatory step for assembly of the photosystem II reaction center complex in Synechocystis PCC 6803.–J. Biol. Chem. 279: 48620–48629, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Kondo K., Mullineaux C.W., Ikeuchi M.: Distinct roles of CpcG1-phycobilisome and CpcG2-phycobilisome in state transitions in a cyanobacterium Synechocystis sp. PCC 6803.–Photosynth. Res. 99: 217–225, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Kromdijk J., Głowacka K., Leonelli L. et al.: Improving photosynthesis and crop productivity by accelerating recovery from photoprotection.–Science 354: 857–861, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Kruk J., Strzałka K.: Redox changes of cytochrome b559 in the presence of plastoquinones.–J. Biol. Chem. 276: 86–91, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Kruk J., Strzałka K.: Dark reoxidation of the plastoquinone-pool is mediated by the low-potential form of cytochrome b559 in spinach thylakoids.–Photosynth. Res. 62: 273–279, 1999.

    Article  CAS  Google Scholar 

  • Machado I.M., Atsumi S.: Cyanobacterial biofuel production.–J. Biotechnol. 162: 50–56, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Morais F., Barber J., Nixon P.J.: The chloroplast-encoded alpha subunit of cytochrome b559 is required for assembly of the photosystem two complex in both the light and the dark in Chlamydomonas reinhardtii.–J. Biol. Chem. 273: 29315–29320, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Müh F., Glöckner C., Hellmich J. et al.: Light-induced quinone reduction in photosystem II.–Biochim. Biophys. Acta 1817: 44–65, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Mullineaux C.W., Allen J.F.: State 1-State 2 transitions in the cyanobacterium Synechococcus 6301 are controlled by the redox state of electron carriers between Photosystems I and II.–Photosynth. Res. 23: 297–311, 1990.

    Article  PubMed  CAS  Google Scholar 

  • Murchie E.H., Niyogi K.K.: Manipulation of photoprotection to improve plant photosynthesis.–Plant Physiol. 155: 86–92, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Page L.E., Liberton M., Pakrasi H.B.: Reduction of photoautotrophic productivity in the cyanobacterium Synechocystis sp. strain PCC 6803 by phycobilisome antenna truncation.–Appl. Environ. Microbiol. 78: 6349–6351, 2012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pakrasi H.B., Williams J.G., Arntzen C.J.: Targeted mutagenesis of the psbE and psbF genes blocks photosynthetic electron transport: evidence for a functional role of cytochrome b559 in photosystem II.–EMBO J. 7: 325–332, 1988.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shinopoulos K.E., Brudvig G.W.: Cytochrome b559 and cyclic electron transfer within photosystem II.–Biochim. Biophys. Acta 1817: 66–75, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Stephenson P.G., Moore C.M., Terry M.J. et al.: Improving photosynthesis for algal biofuels: toward a green revolution.–Trends Biotechnol. 29: 615–623, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Stewart D.H., Brudvig G.W.: Cytochrome b559 of photosystem II.–BBA-Bioenergetics 1367: 63–87, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Suga M., Akita F., Hirata K. et al.: Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond Xray pulses.–Nature 517: 99–103, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Umena Y., Kawakami K., Shen J.R. et al.: Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å.–Nature 473: 55–60, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Whitmarsh J., Pakrasi H.B.: Form and function of cytochrome b559.–In: Ort D.R., Yocum C.F., Heichel I.F. (ed.): Oxygenic photosynthesis: The Light Reactions. Pp. 249–264. Springer, Dordrecht 1996.

    Google Scholar 

  • Wilhelm C., Selmar D.: Energy dissipation is an essential mecha nism to sustain the viability of plants: The physiological limits of improved photosynthesis.–J. Plant Physiol. 168: 79–87, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Wilson A., Ajlani G., Verbavatz J.M. et al: A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria.–Plant Cell 18: 992–1007, 2006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-A. Chu.

Additional information

Acknowledgments: This work was supported by the Ministry of Science and Technology, Taiwan (MOST 105-2311-B-001-053) and Academia Sinica (to H.A. Chu).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, JY., Hung, NT., Lin, KM. et al. Regulating photoprotection improves photosynthetic growth and biomass production in QC-site mutant cells of the cyanobacterium Synechocystis sp. PCC 6803. Photosynthetica 56, 192–199 (2018). https://doi.org/10.1007/s11099-018-0765-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-018-0765-0

Additional key words

Navigation