Advertisement

Photosynthetica

, Volume 56, Issue 3, pp 811–819 | Cite as

Effects of salt stress on low molecular antioxidants and redox state of plastoquinone and P700 in Arabidopsis thaliana (glycophyte) and Eutrema salsugineum (halophyte)

  • M. Wiciarz
  • E. Niewiadomska
  • J. Kruk
Open Access
Article

Abstract

The effects of NaCl treatment were analysed in two species of considerably different resistance. In glycophyte, the content of ascorbate decreased but lipophilic antioxidants (α-tocopherol, plastochromanol, and hydroxy-plastochromanol) increased due to 150 mM NaCl. In halophyte, 300 mM NaCl caused a significant increase in hydrophilic antioxidants (ascorbate, total glutathione) but not in the lipophilic antioxidants. The redox states of plastoquinone (PQ) and P700 were also differently modulated by salinity in both species, as illustrated by an increased oxidation of these components in glycophyte. The presented data suggest that E. salsugineum was able to avoid a harmful singlet oxygen production at PSII, which might be, at least in part, attributed to the induction of the ascorbate-glutathione cycle. Another important cue of a high salinity resistance of this species might be the ability to sustain a highly reduced states of PQ pool and P700 under stress, which however, drastically affect the NADPH yield.

Additional key words

chloroplast oxidative stress photosystems salinity 

Abbreviations

NPQ

nonphotochemical quenching

PC-8

plastochromanol-8

PET

photosynthetic electron transport

PQ

plastoquinone

ROS

reactive oxygen species

Toc

tocopherol

YI

the quantum efficiency of PSI

YND

donor-side limitation to PSI

YNA

acceptor-side limitation to PSI

Supplementary material

11099_2017_733_MOESM1_ESM.pdf (117 kb)
Supplementary material, approximately 117 KB.

References

  1. Amor N., Jiménez A., Megdiche W. et al.: Response of antioxidant systems to NaCl stress in the halophyte Cakile maritima.–Physiol. Plantarum 126: 446–457, 2006.CrossRefGoogle Scholar
  2. Amtmann A.: Learning from evolution: Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants.–Mol. Plant. 2: 3–12, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Apel K., Hirt H.: Reactive oxygen species: metabolism, oxidative stress, and signal transduction.–Annu. Rev. Plant Biol. 55: 373–399, 2004.CrossRefPubMedGoogle Scholar
  4. Baier M., Dietz K.-J.: Chloroplasts as source and target of cellular redox regulation: a discussion on chloroplast redox signals in the context of plant physiology.–J. Exp. Bot. 56: 1449–1462, 2005.CrossRefPubMedGoogle Scholar
  5. Baker N.R.: Chlorophyll fluorescence: A probe of photosynthesis in vivo.–Annu. Rev. Plant Biol. 59: 89–113, 2008.CrossRefPubMedGoogle Scholar
  6. Bilger W., Björkman O.: Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbency changes, fluorescence and photosynthesis in leaves of Hedera canariensis.–Photosynth. Res. 25: 173–185 1990.CrossRefPubMedGoogle Scholar
  7. Bose J., Rodrigo-Moreno A., Shabala S.: ROS homeostasis in halophytes in the context of salinity stress tolerance.–J. Exp. Bot. 65: 1241–1257, 2014.CrossRefPubMedGoogle Scholar
  8. Chang C.C., Ball L., Fryer M.J. et al.: Induction of ascorbate peroxidase 2 expression in wounded Arabidopsis leaves does not involve known wound-signalling pathways but is associated with changes in photosynthesis.–Plant J. 38: 499–511, 2004.CrossRefPubMedGoogle Scholar
  9. Chen H.-X., Gao H.-Y., An S.-Z., Li W.-J.: Dissipation of excess energy in Mehler-peroxidase reaction in Rumex leaves during salt shock.–Photosynthetica 42: 117–122, 2004.CrossRefGoogle Scholar
  10. Dassanayake M., Oh D., Hong H. et al.: Transcription strength and halophytic lifestyle.–Trend. Plant Sci. 16: 1–3, 2011.CrossRefGoogle Scholar
  11. Degl’Innocenti E., Hafsi C., Guidi L. et al.: The effect of salinity on photosynthetic activity in potassium-deficient barley species.–J. Plant Physiol. 166: 1968–1981, 2009.CrossRefPubMedGoogle Scholar
  12. Dietzel L., Bräutigam K., Pfannschmidt T.: Photosynthetic acclimation: state transitions and adjustment of photosystem stoichiometry–functional relationships between short-term and long-term light quality acclimation in plants.–FEBS J. 275: 1080–1088, 2008.CrossRefPubMedGoogle Scholar
  13. Ellouzi H., Hamed K.B., Cela J. et al.: Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte).–Physiol. Plantarum 142: 128–143, 2011.CrossRefGoogle Scholar
  14. Foyer C.H., Noctor G.: Ascorbate and glutathione: the heart of the redox hub.–Plant Physiol. 155: 2–18, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Foyer C.H., Noctor G.: Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications.–Antioxid. Redox Sign. 11: 861–905, 2009.CrossRefGoogle Scholar
  16. Gao F., Zhou Y., Zhu W.: Proteomic analysis of cold stressresponsive proteins in Thellungiella rosette leaves.–Planta 230: 1033–1046, 2009.CrossRefPubMedGoogle Scholar
  17. Ghars M.A., Richard L., Lefebvre-De Vos D.: Phospholipases C and D modulate proline accumulation in Thellungiella halophila/salsuginea differently according to the severity of salt or hyperosmotic stress.–Plant Cell Physiol. 53: 183–192, 2012.CrossRefPubMedGoogle Scholar
  18. Gong Q., Li P., Ma S.: Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana: Salinity stress adaptation in T. halophila.–Plant J. 44: 826–839, 2005.CrossRefPubMedGoogle Scholar
  19. Gossett D., Millhollon E., Lucas M.: Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton.–Plant Cell Rep. 13: 706–714, 1994.CrossRefGoogle Scholar
  20. Gruszka J., Pawlak A., Kruk J.: Tocochromanols, plastoquinol and other biological prenyllipids as singlet oxygen quenchers–determination of singlet oxygen quenching rate constants and oxidation products.–Free Radical Biol. Med. 45: 920–928, 2008.CrossRefGoogle Scholar
  21. Hebbelmann I., Selinski J., Wehmeyer C. et al.: Multiple strategies to prevent oxidative stress in Arabidopsis plants lacking the malate valve enzyme NADP-malate dehydrogenase.–J. Exp. Bot. 63: 1445–1459, 2012.CrossRefPubMedGoogle Scholar
  22. Hernández J., Olmos E., Corpas F. et al.: Salt-induced oxidative stress in chloroplasts of pea plants.–Plant Sci. 105: 151–167, 1995.CrossRefGoogle Scholar
  23. Johnson G.N.: Physiology of PSI cyclic electron transport in higher plants.–Biochim. Biophys. Acta. 1807: 384–389, 2011.CrossRefPubMedGoogle Scholar
  24. Khorobrykh S.A., Karonen M., Tyystjärvi E.: Experimental evidence suggesting that H2O2 is produced within the thylakoid membrane in a reaction between plastoquinol and singlet oxygen.–FEBS Lett. 589: 779–786, 2015.CrossRefPubMedGoogle Scholar
  25. Klughammer C., Schreiber U.: An improved method, using saturating light pulses, for the determination of photosystem I quantum yield via P700+-absorbance changes at 830 nm.–Planta 192: 261–268, 1994.CrossRefGoogle Scholar
  26. Kruk J., Karpinski S.: An HPLC-based method of estimation of the total redox state of plastoquinone in chloroplasts, the size of the photochemically active plastoquinone-pool and its redox state in thylakoids of Arabidopsis.–Biochim. Biophys. Acta 1757: 1669–1675, 2006.CrossRefPubMedGoogle Scholar
  27. Kruk J., Trebst A.: Plastoquinol as a singlet oxygen scavenger in photosystem II.–Biochim. Biophys. Acta 1777: 154–162, 2008.CrossRefPubMedGoogle Scholar
  28. Kruk J., Szymanska R.: Singlet oxygen and non-photochemical quenching contribute to oxidation of the plastoquinone-pool under high light stress in Arabidopsis.–BBA-Bioenergetics 1817: 705–710, 2012.CrossRefPubMedGoogle Scholar
  29. Kruk J., Szymanska R., Nowicka B. et al.: Function of isoprenoid quinones and chromanols during oxidative stress in plants.–New Biotechnol. 33: 636–643, 2016.CrossRefGoogle Scholar
  30. Lichtenthaler H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes.–Methods Enzymol. 148: 350–382, 1987.CrossRefGoogle Scholar
  31. Lokhande V.H., Srivastava A.K., Srivastava S. et al.: Regulated alterations in redox and energetic status are the key mediators of salinity tolerance in the halophyte Sesuvium portulacastrum (L.) L.–Plant Growth Regul. 65: 287–298, 2011.CrossRefGoogle Scholar
  32. Luwe M.W.F., Takahama U., Heber U.: Role of ascorbate in detoxifying ozone in the apoplast of spinach (Spinacia oleracea L.) leaves.–Plant Physiol. 101: 969–976, 1993.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Mittova V., Theodoulou F.L., Kiddle G. et al.: Coordinate induction of glutathione biosynthesis and glutathionemetabolizing enzymes is correlated with salt tolerance in tomato.–FEBS Lett. 554: 417–421, 2003.CrossRefPubMedGoogle Scholar
  34. M’rah S., Ouerghi Z., Eymery F.: Efficiency of biochemical protection against toxic effects of accumulated salt differentiates Thellungiella halophila from Arabidopsis thaliana.–J. Plant Physiol. 164: 375–384, 2007.CrossRefPubMedGoogle Scholar
  35. Müller P., Li X.P., Niyogi K.K.: Non-photochemical quenching. A response to excess light energy.–Plant Physiol. 125: 1558–1566, 2001.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Munné-Bosch S.: The role of alpha-tocopherol in plant stress tolerance.–J. Plant Physio. 162: 743–748, 2005.CrossRefGoogle Scholar
  37. Munné-Bosch S., Alegre L.: The function of tocopherols and tocotrienols in plants.–Crit. Rev. Plant Sci. 21: 31–57, 2002.CrossRefGoogle Scholar
  38. Munns R., Tester M.: Mechanisms of salinity tolerance.–Annu. Rev. Plant Biol. 59: 651–681, 2008.CrossRefPubMedGoogle Scholar
  39. Murata N., Takahashi S., Nishiyama Y. et al.: Photoinhibition of photosystem II under environmental stress.–BBABioenergetics 1767: 414–421, 2007.CrossRefGoogle Scholar
  40. Niewiadomska E., Bilger W., Gruca M. et al.: CAM-related changes in chloroplastic metabolism of Mesembryanthemum crystallinum L.–Planta 233: 275–285, 2011.CrossRefPubMedGoogle Scholar
  41. Niewiadomska E., Wiciarz M.: Adaptations of chloroplastic metabolism in halophytic plants.–In: Lüttge U., Beyschlag W. (ed.): Progress in Botany. Pp. 177–193. Springer International Publishing Switzerland 2015.Google Scholar
  42. Noctor G.: Metabolic signalling in defence and stress: the central roles of soluble redox couples.–Plant Cell Environ. 29: 409–425, 2006.CrossRefPubMedGoogle Scholar
  43. Noctor G., Foyer C.H.: Ascorbate and glutathione: keeping active oxygen under control.–Annu. Rev. Plant Phys. 49: 249–279, 1998.CrossRefGoogle Scholar
  44. Nowicka B., Kruk J.: Occurrence, biosynthesis and function of isoprenoid quinones.–BBA-Bioenergetics 1797: 1587–1605, 2010.CrossRefPubMedGoogle Scholar
  45. Ozgur R., Uzilday B., Sekmen A.H. et al.: Reactive oxygen species regulation and antioxidant defence in halophytes.–Funct. Plant Biol. 40: 832–847, 2013.Google Scholar
  46. Pang C.H., Zhang S.J., Gong Z.Z. et al.: NaCl treatment markedly enhances H2O2-scavenging system in leaves of halophyte Suaeda salsa.–Physiol. Plantarum 125: 490–499, 2005.CrossRefGoogle Scholar
  47. Peeva V.N., Tóth S.Z., Cornic G., Ducruet J.-M.: Thermoluminescence and P700 redox kinetics as complementary tools to investigate the cyclic/chlororespiratory electron pathways in stress conditions in barley leaves–Physiol. Plantarum 144: 83–97, 2012.CrossRefGoogle Scholar
  48. Pfalz J., Liebers M., Hirth M. et al.: Environmental control of plant nuclear gene expression by chloroplast redox signals.–Front. Plant Sci. 3: 257, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Pfannschmidt T.: Chloroplast redox signals: how photosynthesis controls its own genes.–Trends Plant Sci. 8: 33–41, 2003.CrossRefPubMedGoogle Scholar
  50. Pfannschmidt T., Bräutigam K., Wagner R. et al.: Potential regulation of gene expression in photosynthetic cells by redox and energy state: approaches towards better understanding.–Ann. Bot.-London 103: 599–607, 2009.CrossRefGoogle Scholar
  51. Pilarska M., Wiciarz M., Jajic I. et al.: A different pattern of production and scavenging of reactive oxygen species in halopythic Eutrema salsugineum (Thellungiella salsuginea) plants in comparison to Arabidopsis thaliana and its relation to salt stress signaling.–Front. Plant. Sci. 7: 1179, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Pospíšil P.: Production of reactive oxygen species by photosystem II.–BBA-Bioenergetics 1787: 1151–1160, 2009.CrossRefPubMedGoogle Scholar
  53. Puthiyaveetil S., Ibrahim I.M., Allen J.F.: Oxidation-reduction signalling components in regulatory pathways of state transitions and photosystem stoichiometry adjustment in chloroplasts.–Plant Cell Environ. 35: 347–359, 2012.CrossRefPubMedGoogle Scholar
  54. Sacksteder C.A., Kramer D.M.: Dark-interval relaxation kinetics (DIRK) of absorbance changes as a quantitative probe of steadystate electron transfer.–Photosynth. Res. 66: 145–158, 2000.CrossRefPubMedGoogle Scholar
  55. Scheibe R., Stitt M.: Comparison of NADP-malate dehydrogenase activation, QA reduction and O2 evolution in spinach leaves.–Plant Physiol. Bioch. 26: 473–481, 1988.Google Scholar
  56. Scheibe R.: Malate valves to balance cellular energy supply.–Physiol. Plantarum 120: 21–26, 2004.CrossRefGoogle Scholar
  57. Scheibe R., Backhausen J.E., Emmerlich V. et al.: Strategies to maintain redox homeostasis during photosynthesis under changing conditions.–J. Exp. Bot. 56: 1481–1489, 2005.CrossRefPubMedGoogle Scholar
  58. Slesak I., Karpinska B., Surówka E. et al.: Redox changes in the chloroplast and hydrogen peroxide are essential for regulation of C(3)-CAM transition and photooxidative stress responses in the facultative CAM plant Mesembryanthemum crystallinum L.–Plant Cell Physiol. 44: 573–581, 2003.CrossRefPubMedGoogle Scholar
  59. Stepien P., Johnson G.N.: Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: role of the plastid terminal oxidase as an alternative electron sink.–Plant Physiol. 149: 1154–1165, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Suzuki N., Koussevitzky S., Mittler R., Miller G.: ROS and redox signalling in the response of plants to abiotic stress.–Plant Cell Environ. 35: 259–270, 2012.CrossRefPubMedGoogle Scholar
  61. Szymanska R., Kruk J.: Plastoquinol is the main prenyllipid synthesized during acclimation to high light conditions in Arabidopsis and is converted to plastochromanol by tocopherol cyclase.–Plant Cell Physiol. 51: 537–545, 2010.CrossRefPubMedGoogle Scholar
  62. Szymanska R., Nowicka B., Kruk J.: Hydroxy-plastochromanol and plastoquinone-C as singlet oxygen products during photooxidative stress in Arabidopsis.–Plant Cell Environ. 37: 1464–1473, 2014.CrossRefPubMedGoogle Scholar
  63. Taji T., Seki M., Satou M. et al.: Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray.–Plant Physiol. 135: 1697–1709, 2004.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Takahama U., Oniki T.: Regulation of peroxidase-dependent oxidation of phenolics in the apoplast of spinach leaves by ascorbate.–Plant Cell Physiol. 33: 379–387, 1992.Google Scholar
  65. Takahashi S., Murata N.: How do environmental stresses accelerate photoinhibition?–Trends Plant Sci. 13: 178–182, 2008.CrossRefPubMedGoogle Scholar
  66. Takahashi S., Murata N.: Glycerate-3-phosphate, produced by CO2 fixation in the Calvin cycle, is critical for the synthesis of the D1 protein of photosystem II.–Biochim. Biophys. Acta 1757: 198–205, 2006.CrossRefPubMedGoogle Scholar
  67. Uzilday B., Ozgur R., Sekmen A.H.: Changes in the alternative electron sinks and antioxidant defence in chloroplasts of the extreme halophyte Eutrema parvulum (Thellungiella parvula) under salinity.–Ann. Bot.-London 115: 449–463, 2015.CrossRefGoogle Scholar
  68. Vaidyanathan H., Sivakumar P., Chakrabarty R. et al. Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.).–differential response in salt-tolerant and sensitive varieties.–Plant Sci. 165: 1411–1418, 2003.CrossRefGoogle Scholar
  69. Vinocur B., Altman A.: Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations.–Curr. Opin. Biotech. 16: 123–132, 2005.CrossRefPubMedGoogle Scholar
  70. Wiciarz M., Gubernator B., Kruk J. et al.: Enhanced chloroplastic generation of H2O2 in stress-resistant Thellungiella salsuginea in comparison to Arabidopsis thaliana.–Physiol. Plantarum 153: 467–476, 2015.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityKrakówPoland
  2. 2.The Franciszek Górski Institute of Plant PhysiologyPolish Academy of SciencesKrakówPoland

Personalised recommendations