Skip to main content

Effectiveness of cyanobacteria and green algae in enhancing the photosynthetic performance and growth of willow (Salix viminalis L.) plants under limited synthetic fertilizers application

Abstract

The physiological response of plants to triple foliar biofertilization with cyanobacteria and green algae under the conditions of limited use of chemical fertilizers was investigated. Triple foliar biofertilization with intact cells of Microcystis aeruginosa MKR 0105, Anabaena sp. PCC 7120, and Chlorella sp. significantly enhanced physiological performance and growth of plants fertilized with a synthetic fertilizer YaraMila Complex (1.0, 0.5, and 0.0 g per plant). This biofertilization increased the stability of cytomembranes, chlorophyll content, intensity of net photosynthesis, transpiration, stomatal conductance, and decreased intercellular CO2 concentration. Applied monocultures augmented the quantity of N, P, K in plants, the activity of enzymes, such as dehydrogenases, RNase, acid or alkaline phosphatase and nitrate reductase. They also improved the growth of willow plants. This study revealed that the applied nontoxic cyanobacteria and green algae monocultures have a very useful potential to increase production of willow, and needed doses of chemical fertilizers can be reduced.

Abbreviations

A.PCC:

Anabaena sp. PCC 7120

B-A:

Bio-Algeen S90

Ch.sp:

Chlorella sp.

ES:

the environmental sample

GA3:

gibberellic acid

IBA:

indole-3-butyric acid

M.a:

not sonicated monocultures of Microcystis aeruginosa MKR 0105

References

  • Abd El-Moniem E, Abd-Allah A.S.E.: Effect of green alga cells extract as foliar spray on vegetative growth, yield and berries quality of superior grapevines.–Am.-Eurasian J. Agric. Environ. Sci. 4: 427–433, 2008.

    Google Scholar 

  • Adam M.S.: The promotive effect of cyanobacterium Nostoc muscorum on the growth of some crop plants.–Acta Microbiol. Pol. 48: 163–171, 1999.

    CAS  Google Scholar 

  • Al-Khiat S.H.A.: Effect of Cyanobacteria as a Soil Conditioner and Biofertilizer on Growth and some Biochemical Characteristics of Tomato (Lycopersicon esculentum L.) Seedlings. Pp. 190. Faculty of Science, King Saud University, Riyadh 2006.

    Google Scholar 

  • Bergman B., Johansson C., Söderbäck E.: The Nostoc-Gunnera symbiosis.–New Phytol. 122: 379–400, 1992.

    Article  Google Scholar 

  • Booker F.L.: Influence of ozone on ribonuclease activity in wheat (Triticum aestivum) leaves.–Physiol. Plantarum 120: 249–255, 2004.

    CAS  Article  Google Scholar 

  • Burja A.M., Banaigs B., Abou-Mansour E. et al.: Marine cyanobacteria–a profilic source of natural products.–Tetrahedron 57: 9347–9377, 2001.

    CAS  Article  Google Scholar 

  • Cheng K.J., Ingram J.M., Costerton J.W.: Interactions of alkaline phosphatase and the cell wall of Pseudomonas aeruginosa.–J. Bacteriol. 107: 325–336, 1971.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chojnacka A., Romanowska-Duda Z.B., Grzesik M. et al.: Cyanobacteria as a source of bioactive compounds for crop cultivation.–In: Wolowski K., Kwandrans J., Wojtal A.Z. (ed): Taxonomy the Queen of Science -the Beauty of Algae. Book of Abstracts of the 29th International Phycological Conference Krakow. Pp. 81–82. Inst. Bot. Polish Acad. Sci., Krakow 2010.

    Google Scholar 

  • de Caire G.Z., de Cano M.S., Palma R.M. et al.: Changes in soi enzymes activity by cyanobacterial biomass and exopolysaccharides.–Soil Biol. Biochem. 32: 1985–1987, 2000.

    Article  Google Scholar 

  • de Mulé M.C.Z., de Caire G.Z., de Cano M.S. et al.: Effect of cyanobacterial inoculation and fertilizers on rice seedlings and post harvest soil structure.–Commun. Soil Sci. Plan. 30: 97–107, 1999.

    Article  Google Scholar 

  • Dick W.A., Tabatabai M.A.: Significance and potential uses of soil enzymes.–In: Metting F.B. (ed): Soil Microbial Ecology: Application in Agricultural and Environmental Management. Pp. 95–125. Marcel Dekker, New York 1993 Ecochem: Foliar Applied Fertilizer. http://www.ecochem.com/t_foliar.html, 2017.

    Google Scholar 

  • El-Fouly M.M., Abdalla F.E., Shaaban M.M.: Multipurpose large scale production of microalgae biomass in Egypt. Proceedings on 1st Egyptian Etalian Symptoms on Biotechnology. Assiut, Egypt (Nov 21–23). Pp. 305–314, 1992.

    Google Scholar 

  • El Modafar C., Elgadda M., El Boutachfaiti R. et al.: Induction of natural defence accompanied by salicylic acid-dependant systemic acquired resistance in tomato seedlings in response to bioelicitors isolated from green algae.–Sci. Hortic.-Amsterdam 138: 55–63, 2012.

    Article  Google Scholar 

  • Falch B.S., König G.M., Wright A.D. et al.: Biological activities of cyanobacteria: evaluation of extracts and pure compounds.–Planta Med. 61: 321–328, 1995.

    CAS  Article  PubMed  Google Scholar 

  • Glick B.R., Patten C.L., Holguin G. et al.: Biochemical and Genetic Mechanisms Used by Plant Growth Promoting Bacteria. Pp. 267. ICP, Ontario 1999.

    Book  Google Scholar 

  • Gorelova O. A.: Communication of cyanobacteria with plant partners during association formation.–Microbiology 75: 465–469, 2006.

    CAS  Article  Google Scholar 

  • Górnik K., Grzesik M.: Effect of Asahi SL on China aster ‘Aleksandra’ seed yield, germination and some metabolic events.–Acta Physiol. Plant. 24: 379–383, 2002.

    Article  Google Scholar 

  • Grzesik M., Romanowska-Duda Z.B., Piotrowski K.: The effect of potential climatic changes, Cyanobacteria, Biojodis and Asahi SL on development of the Virginia fanpetals (Sida hermaphrodita) plants.–Pamietnik Pulawski 151: 483–491, 2009.

    Google Scholar 

  • Grzesik M., Romanowska-Duda Z.: Improvements in germination, growth, and metabolic activity of corn seedlings by grain conditioning and root application with cyanobacteria and microalgae.–Pol. J. Environ. Stud. 23: 1147–1153, 2014.

    Google Scholar 

  • Grzesik M., Romanowska-Duda Z.: Ability of cyanobacteria and green algae to improve metabolic activity and development of willow plants.–Pol. J. Environ. Stud. 24: 1003–1012, 2015.

    Article  Google Scholar 

  • Haroun S.A., Hussein M.H.: The promotive effect of algal biofertilizers on growth, protein pattern and some metabolic activities of Lupinus termis plants grown in siliceous soil.–Asian J. Plant Sci. 2: 944–951, 2003.

    Article  Google Scholar 

  • Hegazi A.Z., Mostafa M.S.S., Ahmed H.M.I.: Influence of different cyanobacterial application methods on growth and seed production of common bean under various levels of mineral nitrogen fertilization.–Nat. Sci. 8: 183–194, 2010.

    Google Scholar 

  • Hussain A., Hasnain, S.: Comparative assessment of the efficacy of bacterial and cyanobacterial phytohormones in plant tissue culture.–World J. Microb. Biot. 28: 1459–1466, 2012.

    CAS  Article  Google Scholar 

  • Kalaji M.H, Schansker G., Ladle R. J. et al.: Frequently Asked Questions about chlorophyll fluorescence: practical issues.–Photosynth. Res. 122: 121–158, 2014.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Karthikeyan N., Prasanna R., Nain L. et al.: Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat.–Eur. J. Soil Biol. 43: 23–30, 2007.

    CAS  Article  Google Scholar 

  • Khan A.S., Ahmad B., Jaskani M.J. et al.: Foliar application of mixture of amino acids and seaweed (Ascophylum nodosum) extract improve growth and physico-chemical properties of grapes.–Int. J. Agric. Biol., 14: 383–388, 2012.

    CAS  Google Scholar 

  • Knypl J.S., Kabzinska E.: Growth, phosphatase and ribonuclease activity in phosphate deficient Spirodela oligorrhiza cultures. Biochem. Physiol. Pfl. 171: 279–287, 1977.

    CAS  Google Scholar 

  • Kreitlow S., Mundt S., Lindequist, U.: Cyanobacteria–a potential source of new biologically active substances.–J. Biotechnol. 70: 61–63, 1999.

    CAS  Article  PubMed  Google Scholar 

  • Kulk M.M.: The potential for using cyanobacteria (blue-green algae) and algae in the biological control of plant pathogenic bacteria and fungi.–Eur. J. Plant Pathol. 101: 85–599, 1995.

    Google Scholar 

  • Lehmann K., Hause B., Altmann D. et al.: Tomato ribonuclease LX with the functional endoplasmic reticulum retention motif HDEF is expressed during programmed cell death processes, including xylem differentiation, germination, and senescence.–Plant Physiol. 127: 436–449, 2001.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Mahmoud M.S.: Nutritional status and growth of maize plants as affected by green microalgae as soil additives.–J. Biol. Sci. 1: 475–479, 2001.

    Article  Google Scholar 

  • Malliga P., Uma L, Subramanian G.: Lignolytic activity of the cyanobacterium Anabena azollae ML2 and the value of coir waste as a carrier for biofertilizer.–Microbios 86: 175–183, 1996.

    CAS  Google Scholar 

  • Markou G., Nerantzis E.: Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions.–Biotechnol. Adv. 31: 1532–1542, 2013.

    CAS  Article  PubMed  Google Scholar 

  • Masojídek J., Prášil O.: The development of microalgal biotechnology in the Czech Republic.–J. Ind. Microbiol. Biot. 37: 1307–1317, 2010.

    Article  Google Scholar 

  • Mohammadi K., Ghalavand A., Aghaalikhani M.: Study the efficacies of green manure application as chickpea per plant.–World Acad. Sci. Eng. Technol. 46: 233–236, 2010.

    Google Scholar 

  • Nain L., Rana A., Joshi M. et al.: Evaluation of synergistic effects of bacterial and cyanobacterial strains as biofertilizers for wheat.–Plant Soil 331: 217–230, 2010.

    CAS  Article  Google Scholar 

  • Nilsson M., Rasmussen U., Bergman B.: Competition among symbiotic cyanobacterial Nostoc strains forming artificial associations with rice (Oryza sativa).–FEMS Microbiol. Lett. 245: 139–144, 2005.

    CAS  Article  PubMed  Google Scholar 

  • Nunnery J.K., Mevers E., Gerwick W.H.: Biologically active secondary metabolites from marine cyanobacteria.–Curr. Opin Biotech. 21: 787–793, 2010.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Obreht Z., Kerby N.W., Gantar M. et al.: Effects of rootassociated N2-fixing cyanobacteria on the growth and nitrogen content of wheat (Triticum vulgare L.) seedlings.–Biol. Fert. Soils 15: 68–72, 1993.

    CAS  Article  Google Scholar 

  • Perez-Garcia O., Escalante F.M.E., de Bashan L.E. et al.: Heterotrophic cultures of microalgae: Metabolism and potential products.–Water Res. 45: 11–36, 2011.

    CAS  Article  PubMed  Google Scholar 

  • Prakash S., Nikhil N.: Algae as a soil conditioner.–Int. J. Eng. Tech. Res. 2: 68–70, 2014.

    Google Scholar 

  • Prasad R.C., Prasad B.N.: Cyanobacteria as a source biofertilizer for sustainable agriculture in Nepal.–J. Plant Sci. Bot. Orientalis 1: 127–133, 2001.

    Google Scholar 

  • Pszczolkowski W., Romanowska-Duda Z., Owczarczyk A. et al.: Influence of Secondary Metabolites from Cyanobacteria on the Growth and Plant Development. Physiological Reports: Current Advances in Algal Taxonomy and its Applications: Phylogenetic, Ecological and Applied Perspective. Pp. 195–203. Institute of Botany, Polish Academy of Sciences, Krakow 2012.

    Google Scholar 

  • Rana A., Joshi M., Prasanna R. et al.: Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria.–Eur. J. Soil Biol. 50: 118–126, 2012.

    CAS  Article  Google Scholar 

  • Rastogi R.P., Sinha R.P.: Biotechnological and industrial significance of cyanobacterial secondary metabolites.–Biotechnol. Adv. 27: 521–539, 2009.

    CAS  Article  PubMed  Google Scholar 

  • Rodríguez A.A., Stella A.A., Storni M.M. et al.: Effects of cyanobacterial extracelular products and gibberellic acid on salinity tolerance in Oryza sativa L.–Saline Syst. 2: 7, 2006.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roger P.A., Reynaud P.A.: Free-living Blue-green Algae in Tropical Soils. Pp. 147–168. Martinus Nijh Publ., The Hague 1982.

    Google Scholar 

  • Romanowska-Duda Z., Wolska A., Malecka, A.: Influence of blue-green algae as nitrogen fertilizer supplier in regulation of water status in grapevines under stress conditions.–In: Medrano H. (ed.): Book of Abstracts: COST 858: Water Transport and Aquaporins in Grapevines, October 20–23, Alcudia, Spain. Pp. 10. University of the Balearic Islands, Palma 2004

    Google Scholar 

  • Romanowska-Duda Z.B., Grzesik M., Owczarczyk A. et al.: Impact of intra and extracellular substances from Cyanobacteria on the growth and physiological parameters of grapevine (Vitis vinifera).–In: Arola L., Carbonell J. (ed.): 20th International Conference on Plant Growth Substance (IPGSA), Book of Abstracts 28.07–02.08. 2010 Pp. 118. Universitat Rovira i Virgili, Tarragona 2010.

    Google Scholar 

  • Saadatnia H., Riahi H.: Cyanobacteria from paddy fields in Iran as a biofertilizer in rice plants.–Plant Soil Environ. 55: 207–212, 2009.

    Google Scholar 

  • Sahu D., Priyadarshani I., Rath, B.: Cyanobacteria–as potential biofertilizer.–CIBTech J. Microbiol. 1: 20–26, 2012.

    Google Scholar 

  • Sergeeva E., Liaimer A., Bergman B.: Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria.–Planta 215: 229–238, 2002.

    CAS  Article  PubMed  Google Scholar 

  • Shanan N.T., Higazy A.M.: Integrated biofertilization management and cyanobacteria application to improve growth and flower quality of Matthiola incana.–J. Agr. Biol. Sci 5: 1162–1168, 2009.

    CAS  Google Scholar 

  • Shariatmadari Z., Riahi H., Hashtroudi M.S. et al.: Plant growth promoting cyanobacteria and their distribution in terrestrial habitats of Iran.–Soil Sci. Plant Nutr. 59: 535–547, 2013.

    CAS  Article  Google Scholar 

  • Šindelárová M., Šindelár L., Wilhelmová N. et al.: Changes in key enzymes of viral-RNA biosynthesis in chloroplasts from PVY and TMV infected tobacco plants.–Biol. Plantarum 49: 471–474, 2005.

    Article  Google Scholar 

  • Spinelli F., Fiori G., Noferini M. et al.: Perspectives on the use of a seaweed extract to moderate the negative effects of alternate bearing in apple trees.–J. Hortic. Sci. Biotech. 84: 131–137, 2009.

    Article  Google Scholar 

  • Spiller H., Gunasekaran M.: Ammonia-excreting mutant strain of the cyanobacterium Anabaena variabilis supports growth of wheat.–Appl. Microbiol. Biot. 33: 477–480, 1990.

    CAS  Article  Google Scholar 

  • Srivastava S., Emery R.J.N., Kurepin L.V. et al.: Pea PR 10.1 is a ribonuclease and its transgenic expression elevates cytokinin levels.–Plant Growth Regul. 49: 17–25, 2006.

    CAS  Article  Google Scholar 

  • Song T., Martensson L., Eriksson T.: Biodiversity and seasonal variation of the cyanobacterial assemblage in a rice paddy field in Fujian, China.–FEMS Microbiol. Ecol. 54: 131–140, 2005.

    CAS  Article  PubMed  Google Scholar 

  • Subramanaian G., Uma L.: Cyanobacteria in pollution control.–J. Sci. Ind. Res. India 55: 685–692, 1996.

    Google Scholar 

  • Swarnalakshmi K., Prasanna C.R., Kumar A. et al.: Evaluating the influence of novel cyanobacterial biofilmed biofertilizers on soil fertility and plant nutrition in wheat.–Eur. J. Soil Biol. 55: 107–116, 2013.

    Article  Google Scholar 

  • Thajuddin N., Subramanian G.: Cyanobacterial biodiversity and potential applications in biotechnology.–Curr. Sci. 89: 47–57, 2005.

    CAS  Google Scholar 

  • Tukaj Z.: [Exercise Guide for Plant Physiology.] Pp. 1–186. Wydawnictwo Uniwersytetu Gdanskiego, Gdansk 2007. [In Polish]

    Google Scholar 

  • Uysal O., Uysal F.O., Ekinci K.: Evaluation of microalgae as microbial fertilizer.–Eur. J. Sustain. Dev. 4: 77–82, 2015.

    Google Scholar 

  • Vasileva I., Ivanova J., Paunov M et al.:Urea from waste waters–perspective nitrogen and carbon source for green algae Scenedesmus sp. cultivation.–Ecol. Safe. 10: 311–319, 2016.

    Google Scholar 

  • Wilson L.T.: Cyanobacteria: A potential nitrogen source in rice fields.–Texas Rice 6: 9–10, 2006.

    Google Scholar 

Download references

Acknowledgments

Research was supported by National Science Center in Poland under Grant No. N N304 102940 and National Centre for Research and Development Grant No. BIOSTRATEG 2/296369/5/NCBR/2016.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. Romanowska-Duda or H. M. Kalaji.

Additional information

This article is published with open access at link.springer.com

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grzesik, M., Romanowska-Duda, Z. & Kalaji, H.M. Effectiveness of cyanobacteria and green algae in enhancing the photosynthetic performance and growth of willow (Salix viminalis L.) plants under limited synthetic fertilizers application. Photosynthetica 55, 510–521 (2017). https://doi.org/10.1007/s11099-017-0716-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-017-0716-1

Additional key words

  • energy plant
  • gas exchange
  • mineral fertilization