Skip to main content
Log in

Effects of light quality on growth and development, photosynthetic characteristics and content of carbohydrates in tobacco (Nicotiana tabacum L.) plants

  • Original Paper
  • Published:
Photosynthetica

Abstract

In this study, effects of yellow (Y), purple (P), red (R), blue (B), green (G), and white (W) light on growth and development of tobacco plants were evaluated. We showed that monochromatic light reduced the growth, net photosynthetic rate (P N), stomatal conductance, intercellular CO2, and transpiration rate of tobacco. Such a reduction in P N occurred probably due to the stomatal limitation contrary to plants grown under W. Photochemical quenching coefficient (qP), maximal fluorescence of dark-adapted state, effective quantum yield of PSII photochemistry (ΦPSII), and maximal quantum yield of PSII photochemistry (Fv/Fm) of plants decreased under all monochromatic illuminations. The decline in ΦPSII occurred mostly due to the reduction in qP. The increase in minimal fluorescence of dark-adapted state and the decrease in Fv/Fm indicated the damage or inactivation of the reaction center of PSII under monochromatic light. Plants under Y and G showed the maximal nonphotochemical quenching with minimum P N compared with the W plants. Morphogenesis of plants was also affected by light quality. Under B light, plants exhibited smaller angles between stem and petiole, and the whole plants showed a compact type, while the angles increased under Y, P, R, and G and the plants were of an unconsolidated style. The total soluble sugar content increased significantly under B. The reducing sugar content increased under B but decreased significantly under R and G compared with W. In conclusion, different monochromatic light quality inhibited plants growth by reducing the activity of photosynthetic apparatus in plants. R and B light were more effective to drive photosynthesis and promote the plant growth, while Y and G light showed an suppression effect on plants growth. LEDs could be used as optimal light resources for plant cultivation in a greenhouse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B:

blue light

Car:

carotenoids

Chl:

chlorophyll

C i :

intercellular CO2 concentration

DAE:

days of exposure

DM:

dry mass

E :

transpiration rate

F0 :

minimal fluorescence of dark-adapted state

Fm :

maximum fluorescence of dark-adapted state

Fv/Fm :

maximum quantum yield of PSII photochemistry

FM:

fresh mass

G:

green light

g s :

stomatal conductance

LED:

light-emitting diodes

NPQ:

nonphotochemical quenching

P:

purple light

P N :

net photosynthetic rate

qP:

photochemical quenching coefficient

R:

red light

W:

white light

Y:

yellow light

ΦPSII :

quantum efficiency of PSII

References

  • Aasamaa K., Aphalo P.J.: Effect of vegetational shade and its components on stomatal responses to red, blue and green light in two deciduous tree species with different shade tolerance.–Environ. Exp. Bot. 121: 94–101, 2016.

    Article  Google Scholar 

  • Allen D.J., Ort D.R.: Impacts of chilling temperatures on photosynthesis in warm-climate plants.–Trends Plant Sci. 6: 36–42, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Andersen R., Kasperbauer M.J.: Chemical composition of tobacco leaves altered by near ultraviolet and intensity of visible light.–Plant Physiol. 51: 723–726, 1973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azari R., Tadmor Y., Meir A. et al.: Light signaling genes and their manipulation towards modulation of phytonutrient content in tomato fruits.–Biotechnol. Adv. 28: 108–118, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Badger M.R., von Caemmerer S., Ruuska S., Nakano H.: Electron flow to oxygen in higher plants and algae rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase.–Philos. T. Roy Soc. B 355: 1433–1445, 2000.

    Article  CAS  Google Scholar 

  • Baker N.R., Rosenqvist E.: Applications of chlorophyll fluorescence can improve crop production stategies: an examination of future possibilities.–J. Exp. Bot. 55: 1607–1621, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Barrero J.M., Jacobsen J.V., Talbot M.J. et al.: Grain dormancy and light quality effects on germination in the model grass Brachypodium distachyon.–New Phytol. 193: 376–386, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Briggs W.R., Christie J.M.: Phototropins 1 and 2: versatile plant blue-light receptors.–Trends Plant Sci. 7: 204–210, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Brown C.S., Schuerger A.C., Sager J.C.: Growth and photomorphogensis of paper plants under red light-emitting diodes with supplemental blue or far-red lighting.–J. Am. Soc. Hortic. Sci. 120: 808–813, 1995.

    CAS  PubMed  Google Scholar 

  • Buysee J., Merckx R.: An improved colorimetric method to quantify sugar content of plant tissue.–J. Exp. Bot. 44: 1627–1629, 1993.

    Article  Google Scholar 

  • Dere S., Günes T., Sivaci, R.: Spectrophotometric determination of chlorophyll-a, b and total cartenoid of some algae species using different solvents.–Turk. J. Bot. 22: 13–17, 1998.

    Google Scholar 

  • Cope K.R., Bugbee B.: Spectral effects of three types of white light-emitting diodes on plant growth and development: absolute versus relative amounts of blue light.–HortScience 48: 504–509, 2013.

    CAS  Google Scholar 

  • Demming-Adams B., Winter K., Krüger A. et al.: Zeaxanthin synthesis, energy dissipation, and photoprotection of PSII at chilling temperature.–Plant Physiol. 90: 894–898, 1989.

    Article  Google Scholar 

  • Dougher T.A.O., Bugbee B.: Evidence for yellow light suppression of lettuce growth.–Photochem Photobiol. 73: 208–212, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Frankauser C., Chorry J.: Light control of plant development.–Annu. Rev. Cell. Dev. Bi. 13: 203–229, 1997.

    Article  Google Scholar 

  • Franklin K.A.: Shade avoidnace.–New Phytol. 179: 930–944, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Franklin K.A.: Light and temperature signal crosstalk in plant development.–Curr. Opin. Plant Biol. 12: 63–68, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Folta K.M., Maruhnich S.A.: Green light: a singnal to slow down or stop.–J. Exp. Bot. 58: 3099–3111, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Folta K.M., Childers K.S.: Light as a growth regulator: controlling plant biology with narrow-bandth solid-state lighting systems.–HortScience 43: 1957–1964, 2008.

    Google Scholar 

  • Goins G.D., Yorio N.C., Sanwo M.M. et al.: Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodeds (LED) with and without supplemental blue light.–J. Exp. Bot. 48: 1407–1413, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Heo J.W., Shin K.S., Kim S.K. et al.: Light quality affects in vitro growth of grape ‘Teleki 5BB’.–J. Plant Biol. 49: 276–280, 2006.

    Article  Google Scholar 

  • Hogewoning S.W., Trouwborst G., Maljaars H. et al.: Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combination of red and blue light.–J. Exp. Bot. 61: 3107–3117, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iacona C., Muleo R.: Light quality affects in vitro adventitious rooting and ex vitro performance of cherry rootstock Colt.–Sci. Hortic.-Amsterdam 125: 630–636, 2007.

    Article  Google Scholar 

  • Jensen P.E., Bassi R., Boekema Ej. et al.: Structure, function and regulation of plant photosystem I.–BBA-Bioengertics 1767: 335–352, 2007.

    Article  CAS  Google Scholar 

  • Johkan M., Shoji K., Goto F. et al.: Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce.–HortScience 45: 1809–1814, 2010.

    Google Scholar 

  • Kasperbauer M.J.: Spetral distribution of light in tobacco canopy and effects of end-of-day light quality on growth and development.–Plant Physiol. 47: 775–778, 1971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasperbauer M.J., Peaslee D.E.: Morphology and photosynthetic efficiency of tobacco leaves that recevied end-of-day red or far red light during development.–Plant Physiol. 52: 440–442, 1973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ke X., Li J.Y., Gong M. et al.: [Effects of different light quality on growth and photosynthesis of tobacco (Nicotiana tabacum L.) leaves.]–Plant Physiol. J. 47: 512–520, 2011. [In Chinese]

    Google Scholar 

  • Ke X., Xu C.H., Gong M. et al.: [Effects of different light quality on anatomical structure, carboxylase activity of ribulose 1, 5-bisphosphate carboxylase oxygenase and expression of rbc and rca genes in tobacco (Nicotiana tabacum L.) leaves].–Plant Physiol. J. 48: 251–259, 2012. [In Chinese]

    CAS  Google Scholar 

  • Kim H.H.: Green light supplementation for enhance lettuce growth under red and blue light-emitting diodes.–HortScience 39: 1617–1622, 2004.

    PubMed  Google Scholar 

  • Kim S.J., Hahn E.J., Heo J.W. et al.: Effects of LEDs on net photsynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro.–Sci. Hortic.-Amsterdam 101: 143–151, 2004.

    Article  Google Scholar 

  • Krause G.H., Weis E.: Chlorophyll fluorescence and photosynthesis: the basics.–Annu. Rev. Plant Phys. 43: 313–349, 1991.

    Article  Google Scholar 

  • Lee S.H., Tewari R.K., Hahn E.J. et al.: Photon flux density and light quality induce changes in growth, stomatal development, photosynthesis and transpiration of Withania Somnifera (L.) Dunal. plantlets.–Plant Cell Tiss. Org. 90: 141–151, 2007.

    Article  CAS  Google Scholar 

  • Lefebvre S., Lawson T., Fryer M. et al.: Increased sedoheptulose-1, 7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development.–Plant Physiol. 138: 4514–4560, 2005.

    Article  Google Scholar 

  • Leong T.Y., Anderson J.M.: Adaptation of the thylakoid membranes of pea chloroplasts to light intensity. 1. Study on distribution of chlorophyll-protein complexes.–Photosynth. Res. 5: 105–115, 1984.

    Article  CAS  PubMed  Google Scholar 

  • Li H.M., Xu Z.G., Tang C.M.: Effects of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) Plantlets in vitro.–Plant Cell Tiss. Org. 103: 155–163, 2010.

    Article  Google Scholar 

  • Li Q., Kubota C.: Effects of supplemental light quality on growth and phytochemical of baby lettuce.–Environ. Exp. Bot. 67: 59–64, 2009.

    Article  CAS  Google Scholar 

  • Lin K.H., Huang M.Y., Huang W.D. et al.: The effects of red, blue, and white light emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L.var. capitata).–Sci. Hortic.-Amsterdam 150: 86–91, 2013.

    Article  Google Scholar 

  • Liu M.X., Xu Z.G., Guo S.R. et al.: Evaluation of leaf morphology, structure and biochemical substance of ballon flower (platycodon grandiflorum (Jacq.) A. DC.) plantlets in vitro under different light spectra.–Sci. Hortic.-Amsterdam 174: 112–118, 2014.

    Article  CAS  Google Scholar 

  • Liu X.Y., Guo S.R., Xu Z.G. et al.: Regulation of chloroplast ultrastructure, cross-section anatomy of leaves, and morphology of stomata of cherry tomato by light-emitting diodes.–HortScience 46: 217–221, 2011.

    CAS  Google Scholar 

  • Matsuda R., Ohashi-Kaneko K., Fujiwara K. et al.: Effects of blue deficiency on acclimation of light energy partitioning on PSII and CO2 assimilation capacity to high irradiance in spinach leaves.–Plant Cell Physiol. 49: 664–670, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Maxwell K., Johnson G.N.: Chlorophyll fluorescence–a practical guide.–J. Exp. Bot. 51: 659–668, 2000.

    CAS  PubMed  Google Scholar 

  • McMahon M.J., Kelly J.W., Decoteau D.R. et al.: Growth of Dendranthema x grandiflorum (Ramat.) Kitamura under various spectral filter.–J. Am. Soc. Hortic. Sci. 116: 950–954, 1991.

    Google Scholar 

  • Miyake C., Amako K., Shiraishi N. et al.: Acclimation of tobacco leaves to high intensity drives the plastoquinone oxidation system-relationship among the fraction of open PSII centers, non-photochemical quenching of Chl fluorescence and the maximum quantum yield of PSII in the dark.–Plant Cell Physiol. 50: 730–743, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Murtas G., Millar A.: How plants tell the time.–Curr. Opin. Plant Biol. 3: 43–46, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Neff M.M., Fankhauser C., Chory J.: Light: an indicator of time and place.–Genes Dev. 14: 257–271, 2000.

    CAS  PubMed  Google Scholar 

  • Paul M.J., Pellny T.K.: Carbon metabolite feedback regulation of leaf photosynthesis and development.–J. Exp. Bot. 54: 539–547, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Pfannschmidt A., Nilsson A., Allen J.F.: Photosynthetic control of chloroplast gene expression.–Nature 397: 625–668, 1999.

    Article  CAS  Google Scholar 

  • Pfündel E., Baake E.: A quantitative description of fluorescence exciation spectra in intact bean leaves greened under intermittent light.–Photosynth. Res. 26: 19–28, 1990.

    PubMed  Google Scholar 

  • Poudel P.R., Kataoka I., Mochioka R.: Effects of red-and bluelight-emitting diodes on growth and morphogenesis of grapes.–Plant Cell Tiss. Org. 92: 147–153, 2008.

    Article  Google Scholar 

  • Sakai T., Kagawa T., Kasahara M. et al.: Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and choroplast relocation.–P. Natl. Acad. Sci. USA 32: 161–172, 2001.

    Google Scholar 

  • Schuerger A.C., Brown C.S., Stryjewski E.C.: Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodeds supplemented with blue or far red light.–Ann. Bot-London. 79: 273–282, 1997.

    Article  CAS  Google Scholar 

  • Schnettger B.C., Critchley C., Santore U.J. et al.: Relationship between photoinhibition of photosynthesis, D1 protein turnover and chloroplast structure: effects of protein synthesis.–Plant Cell Environ. 17: 55–64, 1994.

    Article  CAS  Google Scholar 

  • Seibert M., Wetherbee P.J., Job D.D.: The effects of light intensity and spectral quality on growth and shoot inititation in tobacco callus.–Plant Physiol. 56: 130–139, 1975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin K.S., Murthy H.N., Heo J.W. et al.: Induction of betalain pigmentation in hairy roots of red beet under different radiation sources.–Biol. Plantarum 47: 149–152, 2003.

    Article  CAS  Google Scholar 

  • Shin K.S., Murthy H.N., Heo J.W. et al.: The effect of light 477 quality on growth and development of in vitro cultured Doritaenopsis plants.–Acta Physiol. Plant. 30: 339–343, 2008.

    Article  CAS  Google Scholar 

  • Su N.N., Wu Q., Shen Z.G. et al.: Effects of light quality on the chloroplastic ultrastructure and photosynthetic characteristics of cucumber seedlings.–Plant Growth Regul. 73: 227–235, 2014.

    Article  CAS  Google Scholar 

  • Sun W., Ubierna N., Ma J.Y. et al.: The coordination of C4 mechanism in maize and Miscanthus x giganteus in response to transient changes in light quality.–Plant Physiol. 164: 1283–1292, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tennessen D.J., Singsaas E.L., Sharkey T.D.: Light-emitting diodes as a light source for photosynthesis research.–Photosynth. Res. 39: 85–92, 1994.

    Article  CAS  PubMed  Google Scholar 

  • van Kooten O., Snel J.F.: The use of chlorophyll fluorescence nomencalture in plant stress physiology.–Photosynth. Res. 25: 147–150, 1990.

    Article  PubMed  Google Scholar 

  • Wang H., Gu M., Cui J. et al.: Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus.–J. Photoch. Photobio. B 96: 30–37, 2009.

    Article  CAS  Google Scholar 

  • Wang H., Jiang Y.P., Yu H.Y. et al.: Light quality affects incidence of powdery mildew, expression of defence-related genes and associated metabolism in cucumber plants.–Eur. J. Plant Pathol. 127: 125–135, 2010.

    Article  CAS  Google Scholar 

  • Wen J.F., Ke X., Gong M. et al.: [Effects of light quality on antioxidant defense system during growth and development of tobacco leaves.]–Acta Bot. Boreal.-Occident. Sin. 31: 1799–1804, 2011. [In Chinese]

    CAS  Google Scholar 

  • Wu M.C., Hou C.Y., Jiang C.M. et al.: A novel approach of LED light radiation improves the antioxidant of pea seedlings.–Food Chem. 101: 1753–1758, 2007.

    Article  CAS  Google Scholar 

  • Xu C.H., Li J.Y., Gong M. et al.: [Effects of supplemental lighting on growth and photosynthesis of tobacco leaves.]–Acta Bot. Boreal. -Occident. Sin. 33: 1–8, 2013. [In Chinese]

    Google Scholar 

  • Yeh N., Chung J.P.: High-brightness LEDs–Energy efficient lighting and their potential in indoor plant cultivation.–Renew. Sust. Energ. Rev. 13: 2175–2180, 2009.

    Article  CAS  Google Scholar 

  • Yorio N.C., Goins G.D., Kagie H.R.: Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation.–HortScience 36: 380–383, 2001.

    CAS  PubMed  Google Scholar 

  • Yu H., Ong B.L.: Efects of radiation quality on growth and photosynthesis of Acacia mangium seedlings.–Photosynthetica 41: 349–355, 2003.

    Article  CAS  Google Scholar 

  • Zhao J., Ke X., Xu C.H. et al.: Effects of different light qualities on activity and gene expression of caspase-like proteases in tobacco leaves.–Agri. Sci. Technol.-Hunan 13: 276–279, 2012.

    CAS  Google Scholar 

  • Wen J.F., Ke X., Gong M. et al.: [Effects of light quality on antioxidant defense system during growth and development of tobacco leaves.]–Acta Bot. Boreal.-Occident. Sin. 31: 1799–1804, 2011. [In Chinese]

    CAS  Google Scholar 

  • Xu C.H., Li J.Y., Gong M. et al.: [Effects of supplemental lighting on growth and photosynthesis of tobacco leaves.]–Acta Bot. Boreal. -Occident. Sin. 33: 01–08, 2013. [In Chinese]

    Google Scholar 

  • Yeh N., Chung J.P.: High-brightness LEDs–Energy efficient lighting and their potential in indoor plant cultivation.–Renew. Sust. Energ Rev. 13: 2175–2180, 2009.

    Article  CAS  Google Scholar 

  • Yu H., Ong B.L.: Efeects ofradiation quality on growth and photosynthesis of Acacia mangium seedlings.–Photosynthetica 41: 349–355, 2003.

    Article  CAS  Google Scholar 

  • Zhao J., Ke X., Gong M. et al.: Effects of different light qualities on activity and gene expression of caspase-like proteases in tobacco leaves.–J. Agr. Sci. Tech-Iran 13: 276–279, 2012.

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by following grants from the National Natural Science Foundation of China (No. 31260064, 31460059), and the key special project of science and technology (110201101003 TS03), State Tobacco Monopoly Bureau, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L.Y., Wang, L.T., Ma, J.H. et al. Effects of light quality on growth and development, photosynthetic characteristics and content of carbohydrates in tobacco (Nicotiana tabacum L.) plants. Photosynthetica 55, 467–477 (2017). https://doi.org/10.1007/s11099-016-0668-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-016-0668-x

Additional key words

Navigation