Skip to main content
Log in

Toxic effects of high copper content on physiological processes in Pinus sylvestris L.

  • Brief Communication
  • Published:
Photosynthetica

Abstract

The aim of this study was to determine the impact of increased copper contents on selected physiological processes in oneyear-old Pinus sylvestris L. needles from a former German timber storage area in Warcino Forest District, a subject to an environmental quality survey. Samples were collected from the area with the high copper content in the soil. The control area was a nearby pine tree stand showing unimpeded growth. The significant growth inhibition was found in dwarf shoots and whole needles, increased water content, and reduced dry mass were also observed. The chlorophyll content was lowered, while 20% higher electrolyte leakage was found. Chlorophyll a fluorescence indicated only higher values of the nonphotochemical quenching in P. sylvestris from the Cu-site. Significant differences were shown in the rate of gas exchange measured by changes in carbon dioxide or oxygen concentration. The intensity of photosynthesis in needles of P. sylvestris from the Cu-site measured by CO2 uptake was considerably higher than that of oxygen production. The rate of respiration in the needles from the Cu-site measured by the amount of released CO2 was higher only by 15%, while according to O2 consumed, the rate increased by 30% in relation to the control. Our results suggest that the copper accumulation in P. sylvestris needles affected the morphology and physiology of the studied organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

Chl:

chlorophyll

control:

control areas of Warcino Forest District

Cu-site:

areas with higher copper concentration in Warcino Forest District

DM:

dry mass

F0 :

minimal fluorescence yield of the dark-adapted state

Fv/Fm :

maximal quantum yield of PSII photochemistry

NPQ:

nonphotochemical quenching

P N :

net photosynthetic rate

R :

respiration

qP :

photochemical quenching coefficient

References

  • Alaoui-Sossé B., Genet P., Vinit-Dunand F. et al.: Effect of copper on growth in cucumber plants (Cucumis sativus) and its relationships with carbohydrate accumulation and changes in ion contents. - Plant Sci. 166: 1213–1218, 2004.

    Article  Google Scholar 

  • Baker N.R., Rosenquist E.: Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. - C J. Exp. Bot. 55: 1607–1621, 2004.

    Article  CAS  Google Scholar 

  • Baranowska-Morek A.: [Plant mechanisms of tolerance to toxic heavy metals.] - Kosmos 52: 283–298, 2003. [In Polish]

    CAS  Google Scholar 

  • Barnes J.D., Balaguer L., Manrique E. et al.: A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. - Environ. Exp. Bot. 32: 85–100, 1992.

    Article  CAS  Google Scholar 

  • Barón M., Arellano J.B., López Gorgé J.: Copper and photosystem II: A controversial relationship. - Physiol. Plantarum 94: 174–180, 1995.

    Article  Google Scholar 

  • Björkman O., Demmig B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. - Planta 170: 489–504, 1987.

    Article  PubMed  Google Scholar 

  • Bouazizi H., Jouili H., Geitmann A. et al.: Copper toxicity in expanding leaves of Phaseolus vulgaris L.: antioxidant enzyme response and nutrient element uptake. - Ecotox. Environ. Safe. 73: 1304–1308, 2010.

    Article  CAS  Google Scholar 

  • Burkhead J.L., Gogolin Reynolds K.A., Abdel-Ghany S.E. et al.: Copper homeostasis. - New Phytol. 182: 799–816, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Caspi V., Droppa M., Horváth G. et al.: The effect of copper on chlorophyll organization during greening of barley leaves. - Photosynth. Res. 62: 165–174, 1999.

    Article  CAS  Google Scholar 

  • Chen L.M., Lin C.C., Kao C.H.: Cu toxicity in rice seedlings: changes in antioxidative enzyme activities, H2O2 level and cell wall peroxidase activity in roots. - Bot. Bull. Acad. Sin. 41: 99–103, 2000.

    CAS  Google Scholar 

  • Clijsters H., Cuypers A., Vangronsveld J.: Physiological responses to heavy metals in higher plants; defense against oxidative stress. - C Z. Naturforsch. 54c: 730–734, 1999.

    Google Scholar 

  • Cruz J.A., Avenson T.J., Kanazawa A. et al.: Plasticity in light reactions of photosynthesis for energy production and photoprotection. - C J. Exp. Bot. 56: 395–406, 2005.

    Article  CAS  Google Scholar 

  • Demidchik V., Sokolik A., Yurin V.: Characteristics of nonspecific permeability and H+-ATPase inhibition induced in the plasma membrane of Nitella flexilis by excessive Cu2+. - Planta 212: 583–590, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V., Sokolik A., Yurin V.: The effect of Cu2+ on ion transport systems of the plant cell plasmalemma. - Plant Physiol. 114: 1313–1325, 1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dmuchowski, W., Bytnerowicz, A.: Monitoring environmental pollution in Poland by chemical analysis of Scots pine (Pinus sylvestris L.) needles. - Environ. Pollut. 87: 87–104, 1995.

    Article  CAS  PubMed  Google Scholar 

  • Ebbert V., Demmig-Adams B., Adams W.W. et al.: Correlation between persistent forms of zeaxanthin-dependent energy dissipation and thylakoid protein phosphorylation. - Photosynth. Res. 67: 63–78, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Elleuch A., Chaabene Z., Grubb D.C. et al.: Morphological and biochemical behavior of fenugreek (Trigonella foenumgraecum) under copper stress. - Ecotoxicol. Environ. Safe. 98: 46–53, 2013.

    Article  CAS  Google Scholar 

  • Gruca-Królikowska S., Wacławek W.: Metals in the environment. Part II. Effect of heavy metals on plants. - Chem. Didact. Ecol. Metrol. 11: 41–55, 2006.

    Google Scholar 

  • Gupta D., Abdullah: Toxicity of copper and cadmium on germination and seedling growth maize (Zea mays L.) seeds. - Ind. J. Sci. Res. 2: 67–70, 2011.

    CAS  Google Scholar 

  • Hall J.L.: Cellular mechanisms for heavy metal detoxification and tolerance. - C J. Exp. Bot. 53: 53–71, 2002.

    Google Scholar 

  • Havaux M.: Rapid photosynthetic adaptation to heat stress triggered in potato leaves by moderately elevated temperatures. - Plant Cell Environ. 16: 461–467, 1993.

    Article  Google Scholar 

  • Jegerschöld C., Arellano J.B., Schröder W.P. et al.: Copper (II) inhibition of electron transport through photosystem II studied by EPR spectroscopy. - Biochemistry 34: 12747–12754, 1995.

    Article  PubMed  Google Scholar 

  • Jiang W., Liu D., Liu X.: Effects of copper on root growth, cell division, and nucleolus of Zea mays. - Biol. Plantarum 44: 105–109, 2001.

    Article  CAS  Google Scholar 

  • Kalaji H.M., Carpentier R., Allakhverdiev S.I. et al.: Fluorescence parameters as early indicators of light stress in barley. - C J. Photoch. Photobio. B. 112: 1–6, 2012..

    Article  CAS  Google Scholar 

  • Kalaji M.H., Goltsev V., Bosa K. et al.: Experimental in vivo measurements of light emission in plants: a perspective dedicated to David Walker. - Photosynth. Res. 114: 69–96, 2012..

    Article  CAS  PubMed  Google Scholar 

  • Kalaji M.H., Nalborczyk E.: Gas exchange of barley seedlings growing under salinity stress. - Photosynthetica 25: 197–202, 1991.

    Google Scholar 

  • Kalaji M.H., Schansker G., Ladle R.J. et al.: Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. - Photosynth. Res. 122: 121–158, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopittke P.M., Menzies N.W.: Effect of Cu toxicity on growth of Cowpea (Vigna unguiculata). - Plant Soil 279: 287–296, 2006.

    Article  CAS  Google Scholar 

  • Kramer D.M., Evans J.R.: The importance of energy balance in improving photosynthetic productivity. - Plant Physiol. 155: 70–78, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Kukkola E., Rautio P., Huttunen S.: Stress indications in copperand nickel-exposed Scots pine seedlings. - Environ. Exp. Bot. 43: 197–210, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Kurczyńska E.U., Dmuchowski W., Włoch W. et al.: The influence of air pollutants on needles and stems of Scots pine (Pinus sylvestris L.) trees. - Environ. Pollut. 98: 325–334, 1997.

    Article  Google Scholar 

  • Lichtenthaler H.K., Buschmann C., Knapp M.: How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio Rfd of leaves with the PAM fluorometer. - Photosynthetica 43: 379–393, 2005.

    Article  CAS  Google Scholar 

  • Lichtenthaler H.K., Knapp M., Buschmann C.: Measurement of chlorophyll fluorescence kinetics (Kautsky effect) and the chlorophyll fluorescence decrease ratio (RFd-values) with the PAM-fluorymeter. - In: Filek N., Biesaga-Kościelniak J., Marcińska I. (ed.): Analytical Methods in Plant Stress Biology. Pp. 93–111. The Franciszek Gorski Institute of Plant Physiol. Polish Acad. Sci., Cracow 2004.

    Google Scholar 

  • Liu D., Jiang W., Meng O. et al.: Cytogenetical and ultrastructural effects of copper on root meristem cells of Allium sativum L. - Biocell 33: 25–32, 2009.

    CAS  PubMed  Google Scholar 

  • Liu J., Xiong Z.T., Li T.Y. et al.: Bioaccumulation and ecophysiological responses to copper stress in two populations of Rumex dentatus L. from Cu contaminated and noncontaminated sites. - Environ. Exp. Bot. 52: 43–51, 2004.

    Article  CAS  Google Scholar 

  • MacFarlane G.R., Burchett M.D.: Toxicity, growth and accumulation relationships of copper, lead and zinc in the grey mangrove Avicennia marina (Forsk.) Vierh. - Mar. Environ. Res. 54: 65–84, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Maksymiec W.: Effect of copper on cellular processes in higher plants. - Photosynthetica 34: 321–342, 1997.

    Article  CAS  Google Scholar 

  • Maxwell K., Johnson G.N.: Chlorophyll fluorescence - a practical guide. - C J. Exp. Bot. 51: 659–668, 2000.

    Article  CAS  Google Scholar 

  • Monni S., Salemaa M., White C. et al.: Copper resistance of Calluna vulgaris originating from the pollution gradient of a Cu-Ni smelter, in southwest Finland. - Environ. Pollut. 109: 211–219, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Monni S., Uhlig C., Hansen E. et al.: Ecophysiological responses of Empetrum nigrum to heavy metal pollution. - Environ. Pollut. 112: 121–129, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Moreira I.N., Mourato M.P., Reis R. et al.: Oxidative stress induced by cadmium and copper in Brassica rapa leaves: indicators of stress, oxidative damage, and antioxidant mechanisms. - Commun. Soil Sci. Plant 46: 2475–2489, 2015.

    Article  Google Scholar 

  • Müller P., Li X.P., Niyogi K.K.: Non-photochemical quenching. A response to excess light energy. - Plant Physiol. 125: 1558–1566, 2001.

    Article  PubMed  PubMed Central  Google Scholar 

  • Osmond B., Badger M., Maxwell K. et al.: Too many photons: photorespiration, photoinhibition and photooxidation. - Trends Plant Sci. 2: 119–121, 1997.

    Article  Google Scholar 

  • Ostrowska A., Porębska G., Sienkiewicz J. et al.: [Properties of soils and plants in the forest environment monitoring.] Pp. 159. Instytut Ochrony Środowiska, Warszawa 2006. [In Polish]

    Google Scholar 

  • Ouzounidou G., Eleftheriou E., Karataglis S.: Ecophysiological and ultrastructural effects of copper in Thlaspi ochroleucum (Cruciferae). - Can. J. Bot. 70: 947–957, 1992.

    Article  CAS  Google Scholar 

  • Ouzounidou G., Symeonidis L., Babalonas D. et al.: Comparative responses of a copper-tolerant and a coppersensitive population of Minuartia hirsuta to copper toxicity. - C J. Plant Physiol. 144: 109–115, 1994.

    Article  CAS  Google Scholar 

  • Pádua M., Cavaco A.M., Aubert S. et al.: Effects of copper on the photosynthesis of intact chloroplasts: interaction with manganese. - Physiol. Plantarum 138: 301–311, 2010.

    Article  Google Scholar 

  • Parzych A., Sobisz Z.: The macro- and microelemental content of Pinus sylvestris L. and Pinus nigra J.F. Arn. needles in Cladonio-Pinetum habitat of the Słowiński National Park. - Forest Res. Pap. 73: 295–303, 2012.

    Google Scholar 

  • Pätsikkä E., Aro E.-M., Tyystjärvi E.: Increase in the quantum yield of photo inhibition contributes to copper toxicity in vivo. - Plant Physiol. 117: 619–627, 1998.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pätsikkä E., Kairavuo M., Šeršen F. et al.: Excess copper predisposes photosystem IIto photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll. - Plant Physiol. 129: 1359–1367, 2002.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng H., Wang-Müller Q., Witt T. et al.: Differences in copper accumulation and copper stress between eight populations of Haumaniastrum katangense. - Environ. Exp. Bot. 79: 58–65, 2012.

    Article  CAS  Google Scholar 

  • Pilon M., Abdel-Ghany S., Cohu C.M. et al.: Copper cofactor delivery in plant cells. - Curr. Opin. Plant Biol. 9: 256–263, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Porcar-Castell A.: A high-resolution portrait of the annual dynamics of photochemical and non-photochemical quenching in needles of Pinus sylvestris. - Physiol. Plantaru 143: 139–153, 2011.

    Article  CAS  Google Scholar 

  • Rintamäki E., Salo R., Lehtonen E. et al.: Regulation of D1 protein-degradation during photoinhibition of photosystem-II in vivo phosphorylation of the D1 protein in various plant groups. - Planta 195: 379–386, 1995.

    Article  Google Scholar 

  • Rouphael Y., Cardarelli M., Rea E. et al.: Grafting of cucumber as a means to minimize copper toxicity. - Environ. Exp. Bot. 63: 49–58, 2008.

    Article  CAS  Google Scholar 

  • Ruban A.V., Horton P.: The xanthophyll cycle modulates the kinetic of nonphotochemical energy dissipation in isolated light-harvesting complexes, intact chloroplasts, and leaves of spinach. - Plant Physiol. 119: 531–542, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rut G., Rzepka A., Krupa J.: The effect of hypoxia and posthypoxia on the fluctuations in concentrations of malate and citrate, the activity of malic enzyme, and on the intensity of gas exchange in moss gametophores. - Photosynthetica 48: 79–86, 2010.

    Article  CAS  Google Scholar 

  • Schachtman D.P., Reid R.J., Ayling S.M.: Phosphorus uptake by plants: from soil to cell. - Plant Physiol. 116: 447–453, 1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sch¨¹tzend¨¹bel A., Polle A.: Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. - C J. Exp. Bot. 53: 1351–1365, 2002.

    Article  Google Scholar 

  • Shaw A.K., Ghosh S., Kalaji M.H. et al.: Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.). - Environ. Exp. Bot. 102: 37–47, 2014.

    Article  CAS  Google Scholar 

  • Siwek M.: [Plants in the environment contaminated with heavy metals. Part II.Detoxification mechanisms and strategies adaptation of plants to high concentrations of heavy metals.] - Wiad. Bot. 52: 7–23, 2008. [In Polish]

    Google Scholar 

  • Stolarska A., Wróbel J., Woźniak A. et al.: Influence of copper and zinc in soil on physiological reaction on wheat seedlings. - Ecol. Chem. Eng. 13: 687–693, 2006.

    CAS  Google Scholar 

  • Tukendorf A., Wójcik A.: [Strategy for avoiding stress in plant resistance to heavy metals.] - Wiad. Bot. 39: 33–40, 1995. [In Polish]

    Google Scholar 

  • Valko M., Morris H., Cronin M.T.D.: Metals, toxicity and oxidative stress. - Curr. Med. Chem. 12: 1161–1208, 2005.

    Article  CAS  PubMed  Google Scholar 

  • van Kooten O., Snel J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology. - Photosynth. Res. 25: 147–150, 1990.

    Article  PubMed  Google Scholar 

  • Vinit-Dunand F., Epron D., Alaoui-Sossé B. et al.: Effects of copper on growth and on photosynthesis of mature and expanding leaves in cucumber plants. - Plant Sci. 163: 53–58, 2002.

    Article  CAS  Google Scholar 

  • Vries W., Heij G.J.: Critical loads and critical levels for the environment effects of air pollutants. - In: Heij G.J., Schneider T. (ed.): Final Report of the Dutch Priority Programme on Acidification Research in the Netherlands. Pp. 205–214. Elsevier, Bilthoven 1991.

    Chapter  Google Scholar 

  • Wanic T., Lasota J., Błońska E. et al.: [Valorization of soils under the former German timber depot in the forest district Warcino and the IBL forest reference plot, covered by a long-term research program in the forest district Polanów. - In: Dominik J. (ed.): [The Fifth Days of Biodiversity in the Promotional Forest Complex; Forests Środkowopomorskie]. - Pp. 47–53. Ekwita, Gdańsk 2013. [In Polish]

    Google Scholar 

  • Williams L.E., Mills R.F.: P1B-ATPases - an ancient family of transition metal pumps with diverse functions in plants. - Trends Plant Sci. 10: 491–502, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski L., Dickinson N.M.: Toxicity of copper to Quercus robur (English Oak) seedlings from a copper-rich soil. - Environ. Exp. Bot. 50: 99–107, 2003.

    Article  CAS  Google Scholar 

  • Yilmaz S., Zengin M.: Monitoring environmental pollution in Erzurum by chemical analysis of Scots pine (Pinus sylvestris L.) needles. - Environ. Int. 29: 1041–1047, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Yruela I., Alfonso M., Barón M. et al.: Copper effect on the protein composition of photosystem II. - Physiol. Plantarum 110: 551–557, 2008.

    Article  Google Scholar 

  • Yruela I., Alfonso M., de Zarate I.O. et al.: Precise location of the Cu (II)-inhibitory binding site in higher plants and bacterial photosynthetic reaction centres as probed by light-induced absorbance changes. - C J. Biol. Chem. 268: 1684–1689, 1993.

    CAS  Google Scholar 

  • Yruela I., Pueyo J.J., Alonso P.J. et al.: Photoinhibition in photosystem II from higher plants. Effect of copper inhibition. - C J. Biol. Chem. 271: 27408–27415, 1996.

    Article  CAS  Google Scholar 

  • Yruela I.: Copper in plants. - Braz. J. Plant Physiol. 17: 145–146, 2005.

    Article  CAS  Google Scholar 

  • Yruela I.: Copper in plants: acquisition, transport and interactions. - Funct. Plant Biol. 36: 409–430, 2009.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Możdżeń.

Additional information

Acknowledgements

This work was supported by the Department of Plant Physiology, Pedagogical University in Krakow and Faculty of Forestry, University of Agriculture, from statutory research funds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Możdżeń, K., Wanic, T., Rut, G. et al. Toxic effects of high copper content on physiological processes in Pinus sylvestris L.. Photosynthetica 55, 193–200 (2017). https://doi.org/10.1007/s11099-016-0229-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-016-0229-3

Additional key words

Navigation