Skip to main content
Log in

Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress

  • Original Papers
  • Published:
Photosynthetica

Abstract

Melatonin mediates many physiological processes in animals and plants. To examine the potential roles of melatonin in salinity tolerance, we investigated the effects of exogenous melatonin on growth and antioxidant system in cucumber under 200 mM NaCl stress conditions. The results showed that the melatonin-treated plants significantly increased growth mass and antioxidant protection. Under salinity stress, the addition of melatonin effectively alleviated the decrease in the net photosynthetic rate, the maximum quantum efficiency of PSII, and the total chlorophyll content. Our data also suggested that melatonin and the resistance of plants exhibited a concentration effect. The application of 50–150 μM melatonin significantly improved the photosynthetic capacity. Additionally, the pretreatment with melatonin reduced the oxidative damage under salinity stress by scavenging directly H2O2 or enhancing activity of antioxidant enzymes (including superoxide dismutase, peroxidase, catalase, ascorbate peroxidase) and concentrations of antioxidants (ascorbic acid and glutathione). Therefore, the melatonin-treated plants could effectively enhance their salinity tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

AsA:

ascorbate

CAT:

catalase

Chl:

chlorophyll

DAT:

days after treatment

DM:

dry mass

DTNB:

5,5′-dithio-bis-2-nitrobenzoic acid

F0 :

minimal fluorescence yield of the dark-adapted state

Fm :

maximal fluorescence yield of the dark-adapted state

Fv :

variable fluorescence

Fv/Fm :

maximal quantum yield of PSII photochemistry

FM:

fresh mass

GR:

glutathion reductase

GSH:

reduced glutathione

GSSH:

oxidized glutathione

IAA:

indole acetic acid

MDA:

malondialdehyde

MT:

melatonin

NSC:

unstressed control group

P N :

net photosynthetic rate

POD:

peroxidase

ROS:

reactive oxygen species

SOD:

superoxide dismutase

ST:

salt treatment

References

  • Aebi H.: Catalase in vitro. — Methods Enzymol. 105: 121–126, 1984.

    Article  CAS  PubMed  Google Scholar 

  • Afreen F., Zobayed S.M., Kozai T.: Melatonin in Glycyrrhiza uralensis: response of plant roots to spectral quality of light and UV-B radiation. — J. Pineal Res. 41: 108–115, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Arnao M.B.: Phytomelatonin: discovery, content, and role in plants. — Adv. Bot. 2014:1–11, 2014.

    Article  Google Scholar 

  • Arnao M.B., Hernández-Ruiz J.: Melatonin promotes adventitious and lateral root regeneration in etiolated hypocotyls of Lupinus albus L. — J. Pineal Res. 42: 147–152, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Arnao M.B., Hernández-Ruiz J.: Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves. — J. Pineal Res. 46: 58–63, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Arnao M.B., Hernández-Ruiz J.: Growth conditions determine different melatonin levels in Lupinus albus L. — J. Pineal Res. 55: 149–155, 2013a.

    Article  CAS  PubMed  Google Scholar 

  • Arnao M.B., Hernández-Ruiz J.: Growth conditions influence the melatonin content of tomato plants. — Food Chem. 138: 1212–1214, 2013b.

    Article  CAS  PubMed  Google Scholar 

  • Arnao M.B., Hernández-Ruiz J.: Melatonin: plant growth regulator and/or biostimulator during stress? — Trends Plant Sci. 19: 789–797, 2014.

    Article  CAS  PubMed  Google Scholar 

  • Choi S., Dadakhujaev S., Ryu H. et al.: Melatonin protects against oxidative stress in granular corneal dystrophy type 2 corneal fibroblasts by mechanisms that involve membrane melatonin receptors. — J. Pineal Res. 51: 94–103, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Dionisio-Sese M.L., Tobita S.: Antioxidant responses of rice seedlings to salinity stress. — Plant Sci. 135: 1–9, 1998.

    Article  CAS  Google Scholar 

  • Foyer C., Noctor G.: Oxygen processing in photosynthesis: regulation and signalling. — New Phytol. 146: 359–388, 2000.

    Article  CAS  Google Scholar 

  • Gómez-Pando L.R., Álvarez-Castro R., Eguiluz-de la Barra A.: Effect of salt stress on peruvian germplasm of Chenopodium quinoa Willd.: A promising crop. — J. Agron. Crop Sci. 196: 391–396, 2010.

    Article  Google Scholar 

  • Galano A., Tan D.X., Reiter R.J.: Melatonin as a natural ally against oxidative stress: a physicochemical examination. — J. Pineal Res. 51: 1–16, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Griffith O.W.: Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. — Anal. Biochem. 106: 207–212, 1980.

    Article  CAS  PubMed  Google Scholar 

  • Hardeland R., Cardinali D.P., Srinivasan V. et al.: Melatonin — a pleiotropic, orchestrating regulator molecule. — Prog. Neurobiol. 93: 350–384, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Ruiz J., Arnao M.B.: Melatonin stimulates the expansion of etiolated lupin cotyledons. — Plant Growth Regul. 55: 29–34, 2008.

    Article  Google Scholar 

  • Hernandez-Ruiz J., Cano A., Arnao M.B.: Melatonin: a growthstimulating compound present in lupin tissues. — Planta 220: 140–144, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Hodges D.M., DeLong J.M., Forney C.F., Prange R.K.: Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. — Planta 207: 604–611, 1999.

    Article  CAS  Google Scholar 

  • Jampeetong A., Brix H.: Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans. — Aquat. Bot. 91: 181–186, 2009.

    Article  CAS  Google Scholar 

  • Jung-Hynes B., Reiter R.J., Ahmad N.: Sirtuins, melatonin and circadian rhythms: building a bridge between aging and cancer. — J. Pineal Res. 48: 9–19, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khalid A.M., Nasim A.R., Abdulbasset M.A.: Salicylic acidmediated alleviation of cadmium toxicity in maize leaves. — J. Plant Sci. 2: 276–281, 2014.

    Google Scholar 

  • Kolář J., Johnson C.H., Macháčková I.: Exogenously applied melatonin (N-acetyl-5-methoxytryptamine) affects flowering of the short-day plant Chenopodium rubrum. — Physiol. Plantarum 118: 605–612, 2003.

    Article  Google Scholar 

  • Lei X.Y., Zhu R.Y., Zhang G.Y., Dai Y.R.: Attenuation of coldinduced apoptosis by exogenous melatonin in carrot suspension cells: the possible involvement of polyamines. — J. Pineal Res. 36: 126–131, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Li C., Wang P., Wei Z. et al.: The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. — J. Pineal Res. 53: 298–306, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler K., Wellburn A.: Determinations of total carotenoids and chlorophylls a and a of leaf extracts in different solvents. — Biochem. Soc. Trans. 11: 591–592, 1983.

    Article  CAS  Google Scholar 

  • Logan B.A., Grace S. C., Adams W. W., Demmig-Adams B.: Seasonal differences in xanthophylls cycle characteristics and antioxidants in Mahonia repens growing in different light environments. — Oecologia 116: 9–17, 1998.

    Google Scholar 

  • McKersie B.D., Bowley S.R., Harjanto E., Leprince O.: Waterdeficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. — Plant Physiol. 111: 1177–1181, 1996.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R.: Oxidative stress, antioxidants and stress tolerance. — Trends Plant Sci. 7: 405–410, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Motilva V., García-Mauriño S., Talero E., Illanes M.: New paradigms in chronic intestinal inflammation and colon cancer: role of melatonin. — J. Pineal Res. 51: 44–60, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Munns R., Tester M.: Mechanisms of salinity tolerance. — Annu. Rev. Plant Biol. 59: 651–681, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y., Asada K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. — Plant Cell Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Noctor G., Foyer C.H.: Ascorbate and glutathione: Keeping active oxygen under control. — Annu. Rev. Plant Phys. 49: 249–279, 1998.

    Article  CAS  Google Scholar 

  • Parida A.K., Das A.B.: Salt tolerance and salinity effects on plants: a review. — Ecotox. Environ. Safe. 60: 324–349, 2005.

    Article  CAS  Google Scholar 

  • Patterson B.D., Macrae E.A., Ferguson I.B.: Estimation of hydrogen peroxide in plant extracts using titanium(IV). — Anal. Biochem. 139: 487–492, 1984.

    Article  CAS  PubMed  Google Scholar 

  • Radyukina N.L., Kartashov A.V., Ivanov Y.V. et al.: Functioning of defense systems in halophytes and glycophytes under progressing salinity. — Russ. J. Plant Physl+ 54: 806–815, 2007.

    Article  CAS  Google Scholar 

  • Rao M.V., Paliyath G., Ormrod D.P.: Ultraviolet-B- and ozoneinduced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. — Plant Physiol. 110: 125–136, 1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiter R.J., Tan D.X., Terron M.P. et al.: Melatonin and its metabolites: new findings regarding their production and their radical scavenging actions. — Acta. Biochim. Pol. 54: 1–9, 2007.

    CAS  PubMed  Google Scholar 

  • Roncarati F., Rijstenbil J.W., Pistocchi R.: Photosynthetic performance, oxidative damage and antioxidants in Cylindrotheca closterium in response to high irradiance, UVB radiation and salinity. — Mar. Biol. 153: 965–973, 2008.

    Article  CAS  Google Scholar 

  • Smirnoff N.: The role of active oxygen in the response of plants to water deficit and desiccation. — New Phytol. 125: 27–58, 1993.

    Article  CAS  Google Scholar 

  • Sreenivasulu N., Grimm B., Wobus U., Weschke W.: Differential response of antioxidant compounds to salinity stress in salttolerant and salt-sensitive seedlings of foxtail millet (Setaria italica). — Physiol. Plantarum 109: 435–442, 2000.

    Article  CAS  Google Scholar 

  • Tan D.X., Manchester L.C., Liu X. et al.: Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes. — J. Pineal Res. 54: 127–138, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Tan D.X., Manchester L.C., Terron M.P. et al.: One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? — J. Pineal Res. 42: 28–42, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Wang P., Sun X., Li C. et al.: Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. — J. Pineal Res. 54: 292–302, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Wang P., Yin L., Liang D. et al.: Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate-glutathione cycle. — J. Pineal Res. 53: 11–20, 2012.

    Article  PubMed  Google Scholar 

  • Xu S.C., He M.D., Zhong M. et al.: Melatonin protects against Nickel-induced neurotoxicity in vitro by reducing oxidative stress and maintaining mitochondrial function. — J. Pineal Res. 49: 86–94, 2010.

    CAS  PubMed  Google Scholar 

  • Zhang N., Sun Q., Zhang H. et al.: Roles of melatonin in abiotic stress resistance in plants. — J. Exp. Bot. 66: 647–656, 2015

    Article  CAS  PubMed  Google Scholar 

  • Zhang N., Zhao B., Zhang H.J. et al.: Melatonin promotes waterstress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). — J. Pineal Res. 54: 15–23, 2013.

    CAS  PubMed  Google Scholar 

  • Zhang N., Zhao H., Yang R.C. et al.: Advances in melatonin and its functions in plants. — Agr. Sci. Tech. 13: 1833–1837, 2012.

    CAS  Google Scholar 

  • Zhu J.K.: Plant salt tolerance. — Trends Plant Sci. 6: 66–71, 2001.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Sun.

Additional information

Acknowledgements: This work was supported by the earmarked fund for China Agricultural Research System. The authors are grateful to Priscilla Licht for help in revising our English composition and to Mr. Zhengwei Ma for management of the potted cucumber plants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L.Y., Liu, J.L., Wang, W.X. et al. Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress. Photosynthetica 54, 19–27 (2016). https://doi.org/10.1007/s11099-015-0140-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-015-0140-3

Additional key words

Navigation