Skip to main content

Advertisement

Log in

Developmental changes in energy dissipation in etiolated wheat seedlings during the greening process

  • Original Papers
  • Published:
Photosynthetica

Abstract

We studied the developmental changes in photosynthetic and respiration rates and thermal dissipation processes connected with chloroplasts and mitochondria activity in etiolated wheat (Triticum aestivum L., var. Irgina) seedlings during the greening process. Etioplasts gradually developed into mature chloroplasts under continuous light [190 μmol(photon) m−2 s−1] for 48 h in 5-day-dark-grown seedlings. The net photosynthetic rate of irradiated leaves became positive after 6 h of illumination and increased further. The first two hours of de-etiolation were characterized by low values of maximum (Fv/Fm) and actual photochemical efficiency of photosystem II (PSII) and by a coefficient of photochemical quenching in leaves. Fv/Fm reached 0.8 by the end of 24 h-light period. During greening, energy-dependent component of nonphotochemical quenching of chlorophyll fluorescence, violaxanthin cycle (VXC) operation, and lipoperoxidation activity changed in a similar way. Values of these parameters were the highest at the later phase of de-etiolation (4–12 h of illumination). The respiration rate increased significantly after 2 h of greening and it was the highest after 4–6 h of illumination. It was caused by an increase in alternative respiration (AP) capacity. The strong, positive linear correlation was revealed between AP capacity and heat production in greening tissues. These results indicated that VXC in chloroplasts and AP in mitochondria were intensified as energy-dissipating systems at the later stage of greening (after 4 h), when most of prolamellar bodies converted into thylakoids, and they showed the greatest activity until the photosynthetic machinery was almost completely developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AL:

actinic light

AP:

alternative pathway of respiration

Ax:

antheraxanthin

Car:

carotenoids

Ch:

chloroplast

Chl:

chlorophyll

Chlide:

chlorophyllide

CP:

cytochrome pathway of respiration

DM:

dry mass

ETC:

electron transport chain

Ft, Fo′, and Fm :

stationary, minimal, and maximal fluorescence in leaves adapted to the actinic light [190 μmol(photon) m−2 s−1, PAR]

FM:

fresh mass

Fv/Fm :

maximum photochemical efficiency of PSII

lut:

lutein

LPA:

lipoperoxidation activity

M:

mitochondrion

NPQ:

nonphotochemical quenching

Nx:

neoxanthin

PAR:

photosynthetically active radiation

PLB:

prolamellar body

P N :

net photosynthetic rate

Pchlide:

protochlorophyllide

PSII:

photosystem II

q:

rate of heat production

qE :

energy-dependent component of nonphotochemical fluorescence quenching

qN and qP :

coefficients of nonphotochemical and photochemical quenching, respectively

R D :

dark respiration measured as CO2 emission rate

ROS:

reactive oxygen species

SHAM:

salicylhydroxamic acid

TBARS:

thiobarbituric acid-reactive-substances

TCA:

tricarboxylic acid cycle

Valt and Vcyt :

capacity of alternative and cytochrome pathway of respiration, respectively

Vt :

total respiration measured as O2 uptake rate

VDE:

violaxanthin de-epoxidase

Vx:

violaxanthin

VXC:

violaxanthin cycle

ΦPSII :

actual photochemical efficiency of PSII

Zx:

zeaxanthin

β-Car:

β-carotene

References

  • Boiko, B.N., Malyshev, R.V., Ogorodnikova S.Yu. et al.: [Differential microcalorimeter for research of metabolic processes in living structures and its application in physiology of plants.] — Nauchnoe priborostroenie 19: 36–44, 2009. [In Russian]

    CAS  Google Scholar 

  • Bonente, G., Howes, B.D., Caffarri, S. et al.: Interactions between the photosystem II subunit PsbS and xanthophylls studied in vivo and in vitro. — J. Biol. Chem. 283: 8434–8445, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Covey-Crump, E.M., Bykova, N.V., Affrourtit, C. et al.: Temperature-dependent changes in respiration rates and redox poise of the ubiquinon pool in protoplasts and isolated mitochondria of potato leaves. — Physiol. Plant. 129: 175–84, 2007.

    Article  CAS  Google Scholar 

  • Cuttriss, A.J., Chubb, A.C., Alawady, A. et al.: Regulation of lutein biosynthesis and prolamellar body formation in Arabidopsis. — Funct. Plant Biol. 34: 663–72, 2007.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B.: Carotenoids and photoprotection: a role for the xanthophyll zeaxanthin. — Biochim. Biophys. Acta 1020: 1–24, 1990.

    Article  CAS  Google Scholar 

  • Demming-Adams, B., Adams, W.W.III: Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species. — Planta 198: 460–70, 1996.

    Article  Google Scholar 

  • Dinakar, C., Raghavendra, A.S., Padmasree, K.: Importance of AOX pathway in optimizing photosynthesis under high light stress: Role of pyruvate and malate in activating of AOX. — Physiol. Plant. 139: 13–26, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Feng, H.Q., Li, H.Y., Zhou, G.M. et al.: Influence of irradiation on cyanide-resistant respiration and AOX1multi-gene family expression during greening of etiolated rice seedlings. — Photosynthetica 45: 272–279, 2007.

    Article  CAS  Google Scholar 

  • Foyer, C.H., Noctor, G.: Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria — Physiol. Plant. 119: 355–364, 2003.

    Article  CAS  Google Scholar 

  • Franck, F., Mathis, P.: A short-lived intermediate in the photoenzymatic reduction of protochlorophyll(ide) into chlorophyll(ide) at a physiological temperature. — Photochem. Photobiol. 32: 799–803, 1980.

    Article  CAS  Google Scholar 

  • Garmash, E.V., Golovko, T.K.: CO2 gas exchange and growth in Rhaponticum carthamoides under the conditions of middle taiga subzone of Northeastern Europe: 1. Dependence of photosynthesis and respiration on environmental factors. — Russ. J. Plant Physiol. 44: 737–745, 1997.

    CAS  Google Scholar 

  • Garmash, E.V., Golovko, T.K.: Effect of cadmium on growth and respiration of barley plants grown under two temperature regimes. — Russ. J. Plant Physiol. 56: 343–347, 2009.

    Article  CAS  Google Scholar 

  • Gechev, T.S., Van Breusegem, F., Stone, J.M. et al.: Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. — BioEssays 28: 1091–1101, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Gilmore, A.M.: Mechanistic aspects of xanthophyll cycledependent photoprotection in higher plant chloroplasts and leaves. — Physiol. Plant. 99: 197–209, 1997.

    Article  CAS  Google Scholar 

  • Gilmore, A.M., Yamamoto, H.Y.: Zeaxanthin formation and energy-dependent fluorescence quenching in pea chloroplasts under artificially mediated linear and cyclic electron transport. — Plant Physiol. 96: 635–43, 1991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruszecki, W.I., Gospodarek, M., Grudziński, W. et al.: Lightinduced change of configuration of the LHCII-bound xanthophyll (tentatively assigned to violaxanthin): A resonance Raman study. — J. Phys. Chem. B. 113: 2506–2512, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Hansen, L.D., Hopkin, M.S., Rank, D.R. et al.: The relation between plant growth and respiration: A thermodynamic model. — Planta 194: 77–85, 1994.

    Article  CAS  Google Scholar 

  • Heath, R.L., Packer, L.: Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acids peroxidation. — Arch. Biochem. Biophys. 125: 189–98, 1968.

    Article  CAS  PubMed  Google Scholar 

  • Horton, P., Ruban, A.V., Walters, R.G.: Regulation of light harvesting in green plants. Indication by nonphotochemical quenching of chlorophyll fluorescence. — Plant Physiol. 106: 415–420, 1994.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ignatov, N.V., Krasnovskii, A.A., Jr., Litvin, F.F. et al.: Lowtemperature (77 K) excitation spectra of fluorescence and phosphorescence of native forms of protochlorophyll(ide) in etiolated leaves of Phaseolus vulgaris and P. coccineus. — Photosynthetica 17: 352–360, 1983.

    CAS  Google Scholar 

  • Juszczuk, I.M., Szal, B., Rychter, A.M.: Oxidation-reduction and reactive oxygen species homeostasis in mutant plants with respiratory chain complex I dysfunction. — Plant Cell Environ. 35: 296–307, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Kalituho, L. Beran, K.C., Jahns, B.: The transiently generated nonphotochemical quenching of excitation energy in Arabidopsis leaves is modulated by zeaxanthin. — Plant Physiol. 143: 1861–1870, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis: the basics. — Annu. Rev. Plant Physiol. Plant Mo1. Biol. 42: 313–349, 1991.

    Article  CAS  Google Scholar 

  • Kumar, N., Vyas, D., Kumar S.: Plants at high altitude exhibit higher component of alternative respiration. — J. Plant Physiol. 164: 31–38, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Lambers, H.: Cyanide-resistant respiration: A non-phosphorylating electron transport pathway acting as an energy overflow. — Physiol. Plant. 55: 478–85, 1982.

    Article  CAS  Google Scholar 

  • Latowski, D., Grzyb, J., Strzalka, K. The xanthophylls cycle — molecular mechanism and physiological significance. — Acta Physiol. Plant. 26: 197–212, 2004.

    Article  CAS  Google Scholar 

  • Lichtenthaler, H.K.: Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. — Methods Enzymol. 148: 350–382, 1987.

    Article  CAS  Google Scholar 

  • Logan, D.C.: The mitochondrial compartment. — J. Exp. Bot. 57: 1225–1243, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Maxwell, D.P., Wang, Y., McIntosh, L.: The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. — Proc. Nat. Acad. Sci. USA 96: 8271–8276, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millenaar, F.F., Lambers, H.: The alternative oxidase: In vivo regulation and function. — Plant Biol. 5: 2–15, 2003.

    Article  CAS  Google Scholar 

  • Mubarakshina, M.M., Ivanov, B.N., Naydov, I.A. et al.: Production and diffusion of chloroplastic H2O2 and its implication to signaling. — J. Exp. Bot. 61: 3577–3587, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Møller, I.M., Bérczi, A., van der Plas, L.H.W. et al.: Measurement of the activity and capacity of the alternative pathway in intact plant tissues: Identification of problems and possible solutions. — Physiol. Plant. 72: 642–649, 1988.

    Article  Google Scholar 

  • Møller, I.M., Sweetlove, L.J.: ROS signalling — specificity is required. — Trends Plant Sci. 15: 370–374, 2010.

    Article  PubMed  Google Scholar 

  • Navrot, N., Rouhier, N., Gelhaye, E. et al.: Reactive species oxygen generation and antioxidant systems in plant mitochondria. — Physiol. Plant. 129: 185–195, 2007.

    Article  CAS  Google Scholar 

  • Niyogi, K.K., Grossman, A.R., Björkman, O.: Arabidopsis mutants define a central role for the xanthophylls cycle in the regulation of photosynthetic energy conversion. — Plant Cell 10: 1121–1134, 1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noguchi, K., Yoshida, K.: Interaction between photosynthesis and respiration in illuminated leaves. — Mitochondrion 8: 887–899, 2008.

    Article  Google Scholar 

  • Nowicka, B., Strzalka, W., Strzalka, K.: New transgenic line of Arabidopsis thaliana with partly disabled zeaxanthin epozidase activity displays changed carotenoid composition, xanthopyll cycle activity and non-photochemical quenching kinetics. — J. Plant Physiol. 166: 1045–1056, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Padmasree, K., Raghavendra, A.S.: Response of photosynthetic carbon assimilation in mesophyll protoplasts to restriction on mitochondrial oxidative metabolism: Metabolites related to the redox status and sucrose biosynthesis. — Photosynth. Res. 62: 231–239, 1999.

    Article  CAS  Google Scholar 

  • Park, H., Kreunen, S.S., Cuttriss, A.J. et al.: Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. — Plant Cell 14: 321–332, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfündel, E., Strasser, R.J.: Violaxanthin de-epoxidase in etiolated leaves. — Photosynth. Res. 15: 67–73, 1988.

    Article  PubMed  Google Scholar 

  • Polesskaya, O.G., Alekhina, N.D.: [Nitrogen starvation effect on wheat chloroplast photochemical activity and their resistance to high intensivity light.] — Vestnik Moskovskogo universiteta (Moscow Univ. Biol. Sci. Bull.) 16: 31–37, 1995. [In Russian]

    Google Scholar 

  • Quick, W.P., Stitt, M.: An examination of factors contributing to non-photochemical quenching of chlorophyll fluorescence in barley leaves. — Biochim. Biophys. Acta 977: 287–296, 1989.

    Article  CAS  Google Scholar 

  • Rachmilevich, S., Xu, Y., Gonzalez-Meler, M.A. et al.: Cytochrome and alternative pathway in roots of thermal and non-thermal Agrostis species in response to high soil temperature. — Physiol. Plant. 129: 163–174, 2007.

    Article  Google Scholar 

  • Rasmusson, A.G., Escobar, M.A.: Light and diurnal regulation of plant respiratory gene expression. — Physiol. Plant. 129: 57–67, 2007.

    Article  CAS  Google Scholar 

  • Ribas-Carbo., M., Robinson, S.A., González-Meler, M.A. et al.: Effects of light on respiration and oxygen isotope fractionation in soybean cotyledons. — Plant Cell Environ. 23: 983–989, 2000.

    Article  CAS  Google Scholar 

  • Ruban, A.V., Berera, R., Ilioaia, C. et al.: Identification of a mechanism of photoprotective energy dissipation in higher plants. — Nature 450: 575–578, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Ruban, A.V., Wentworth, M., Horton, P.: Kinetic analysis of nonphotochemical quenching of chlorophyll fluorescence. 1. Isolated chloroplasts. — Biochemistry 40: 9896–9901, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Schoefs, B., Bertrand, M., Lemoine, Y.: Changes in the photosynthetic pigments in bean leaves during the first photoperiod of greening and the subsequent dark-phase. Comparison between old (10-d-old) leaves and young (2-dold) leaves. — Photosynth. Res. 57: 203–213, 1998.

    Article  Google Scholar 

  • Schoefs, B., Franck, F.: Photoreduction of protochlorophyllide to chlorophyllide in 2-d-old dark-grown bean (Phaseolus vulgaris cv. Commodore) leaves. Comparison with 10-d-old dark-grown (etiolated) leaves. — J. Exp. Bot. 44: 1053–1057, 1993.

    Article  CAS  Google Scholar 

  • Semikhatova, O.A.: [Energy of Plant Respiration under Normal Conditions and Ecological Stress. The 48th Timiryazev Lecture.] — Nauka, Leningrad 1990. [In Russ.]

    Google Scholar 

  • Solymosi, K., Schoefs, B.: Etioplast and etio-chloroplast formation under natural conditions: the dark side of chlorophyll biosynthesis in angiosperms. — Photosynth. Res. 105: 143–166, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Sweetlove, L.J., Heazlewood, J.L., Herald, V. et al.: The impact of oxidative stress on Arabidopsis mitochondria. — Plant J. 32: 891–904, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Szabó, I., Bergantino, E., Giacometti, G.M.: Light and oxygenic photosynthesis: energy dissipation as a protection mechanism against photo-oxidation. — EMBO Reports 6: 629–634, 2005.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tooming, Kh.G.: [Ecological Principles of the Maximal Productivity of Plant Stands.] — Gidrometeoizdat, Leningrad 1984. [In Russian]

    Google Scholar 

  • Umbach, A.L., Fiorani, F., Siedow, J.N.: Characterization of transformed Arabidopsis with altered alternative oxidase levels and analysis of effects on reactive oxygen species in tissue. — Plant Physiol. 139: 1806–1820, 2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanlerberghe, G.C., Cvetkovska, M. Wang, J.: Is the maintenance of homeostatic mitochondrial signaling during stress a physiological role for alternative oxidase? — Physiol. Plant. 137: 392–406, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Vanlerberghe, G.C., McIntosh, L.: Alternative oxidase: From gene to function. — Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 703–734, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Waloszek, A., Więckowski, S., Planner, A. et al.: Photothermal spectra of thylakoides isolated from cucumber cotyledons at various stages of greening. — Photosynthetica 40: 279–288, 2002.

    Article  CAS  Google Scholar 

  • Wilhelm, C., Selmar, D.: Energy dissipation is an essential mechanism to sustain the viability of plants: The physiological limits of improved photosynthesis. — J. Plant Physiol. 168: 179–87, 2011.

    Google Scholar 

  • Yoshida, K., Watanabe, C., Kato, Y. et al.: Influence of chloroplastic photo-oxidative stress on mitochondrial alternative oxidase capacity and respiratory properties: A case study with Arabidopsis yellow variegated 2. — Plant Cell Physiol. 49: 592–603, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, D.-W., Xu, F., Zhang, Z.-W. et al.: Effects of light on cyanide-resistant respiration and alternative oxidase function in Arabidopsis seedlings. — Plant Cell Environ. 33: 2121–2131, 2010.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Garmash.

Additional information

Acknowledgments: We are thankful to Prof. Kazimierz Strzałka and Prof. Anna Rychter for reading the manuscript and for useful comments. This work is supported by the grant from the Ural Branch of the Russian Academy of Sciences (No 12-Y-4-1008). In addition, we are grateful to the reviewers for their valuable comments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garmash, E.V., Dymova, O.V., Malyshev, R.V. et al. Developmental changes in energy dissipation in etiolated wheat seedlings during the greening process. Photosynthetica 51, 497–508 (2013). https://doi.org/10.1007/s11099-013-0044-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-013-0044-z

Additional key words

Navigation