Skip to main content
Log in

Root-zone CO2 and root-zone temperature effects on photosynthesis and nitrogen metabolism of aeroponically grown lettuce (Lactuca sativa L.) in the tropics

  • Published:
Photosynthetica

Abstract

Effects of elevated root-zone (RZ) CO2 concentration (RZ [CO2]) and RZ temperature (RZT) on photosynthesis, productivity, nitrate (NO3 ), total reduced nitrogen (TRN), total leaf soluble and Rubisco proteins were studied in aeroponically grown lettuce plants in a tropical greenhouse. Three weeks after transplanting, four different RZ [CO2] concentrations (ambient, 360 ppm, and elevated concentrations of 2,000; 10,000; and 50,000 ppm) were imposed on plants at 20°C-RZT or ambient(A)-RZT (24–38°C). Elevated RZ [CO2] resulted in significantly higher light-saturated net photosynthetic rate, but lower light-saturated stomatal conductance. Higher elevated RZ [CO2] also protected plants from both chronic and dynamic photoinhibition (measured by chlorophyll fluorescence Fv/Fm ratio) and reduced leaf water loss. Under each RZ [CO2], all these variables were significantly higher in 20°C-RZT plants than in A-RZT plants. All plants accumulated more biomass at elevated RZ [CO2] than at ambient RZ [CO2]. Greater increases of biomass in roots than in shoots were manifested by lower shoot/root ratios at elevated RZ [CO2]. Although the total biomass was higher at 20°C-RZT, the increase in biomass under elevated RZ [CO2] was greater at A-RZT. Shoot NO3 and TRN concentrations, total leaf soluble and Rubisco protein concentrations were higher in all elevated RZ [CO2] plants than in plants under ambient RZ [CO2] at both RZTs. Under each RZ [CO2], total leaf soluble and Rubisco protein concentrations were significantly higher at 20°C-RZT than at A-RZT. Our results demonstrated that increased P Nmax and productivity under elevated [CO2] was partially due to the alleviation of midday water loss, both dynamic and chronic photoinhibition as well as higher turnover of Calvin cycle with higher Rubisco proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A-RZT:

ambient root-zone temperature

DM:

dry mass

Fo Fm :

minimum and maximum chlorophyll fluorescence yield

Fv :

variable fluorescence

Fv/Fm :

maximum PSII quantum yield without actinic light

FM:

fresh mass

g smax :

light-saturated stomatal conductance

NO3 :

nitrate

NR:

nitrate reductase

P Nmax :

light-saturated net photosynthetic rate

PPFD:

photosynthetic photon flux density

PSII:

photosystem II

Rubisco:

ribulose-1,5-bisphosphate carboxylase/oxygenase

RWC:

relative water content

RZ [CO2]:

root-zone CO2 concentration

RZT:

root-zone temperature

TRN:

total reduced nitrogen

TM:

turgid mass

References

  • Ainsworth, E.A., Rogers, A.: The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. — Plant Cell Environ. 30: 258–270, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Andrews, J.T., Lorimer, G.M.: Rubisco: structure, mechanism and prospects for improvement. — In: Hatch, M.D., Boardman, N.K., (ed.): The Biochemistry of Plants. Vol. 10. Pp. 132–219. Academic Press, New York 1987.

    Google Scholar 

  • Chaves, M.M., Oliveira, M.M.: Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. — J. Exp. Bot. 55: 2365–2384, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Cookson, S.J., Williams, L.E., Miller, A.J.: Light-dark changes in cytosolic nitrate pools depend on nitrate reductase activity in Arabidopsis leaf cells. — Plant Physiol. 138: 1097–1105, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Cornic, G., Fresneau, C.: Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystem II activity during a mild drought. — Ann. Bot. 89: 887–894, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Cramer, M.D., Lewis, O.A.M.: The influence of nitrate and nium nutrition on the growth of wheat (Triticum aestivum) and maize (Zea mays) plants. — Ann. Bot. 72: 359–365, 1993.

    Article  CAS  Google Scholar 

  • Cramer, M.D., Richards, M.D.: The effect of rhizosphere dissolved inorganic carbon on gas exchange characteristics and growth rates of tomato seedlings. — J. Exp. Bot. 50: 79–87, 1999.

    CAS  Google Scholar 

  • De Jong, E., Schappert, H.J.V.: Calculation of soil respiration and activity from CO2 profile in the soil. — Soil Sci. 113: 328–333, 1972.

    Article  Google Scholar 

  • Douglas, J.M.: Advanced Guide to Hydroponics. — Pelham Books/Stephen Greene Press, London 1985.

    Google Scholar 

  • Du, Y.C., Tachibana, S.: Effect of supraoptimal root temperature on the growth, root respiration and sugar content of cucumber plants. — Sci. Hort. 58: 289–301, 1994.

    Article  CAS  Google Scholar 

  • Ellsworth, D.S., Reich, P.B., Naumburg, E.S. et al.: Photosynthesis, carboxylation and leaf nitrogen responses of 16 species to elevated pCO2 across four free-air CO2 enrichment experiments in forest, grassland and desert. — Global Change Biol. 10: 2121–2138, 2004.

    Article  Google Scholar 

  • Evans, J.R.: Photosynthesis and nitrogen relationships in leaves of C3 plants. — Oecologia 78: 9–19, 1989.

    Article  Google Scholar 

  • Fresneau, C., Ghashghaie, J., Cornic, G.: Drought effect on nitrate reductase and sucrose-phosphate synthase activities in wheat (Triticum durum L.): role of leaf internal CO2. — J. Exp. Bot. 58: 2983–2992, 2007.

    Article  PubMed  CAS  Google Scholar 

  • He, J.: Impact of root-zone temperature on photosynthetic efficiency of aeroponically grown temperate and subtropical vegetable crops in the tropics. — In: Buchner, T.B., Ewingen, N.H. (ed.): Theory and Applications in Energy, Biotechnology and Nanotechnology. Pp. 111–144. Nova Science Publishers, New York 2009.

    Google Scholar 

  • He, J.: Mineral nutrition of aeroponically grown subtropical and temperate crops in the tropics with manipulation of root-zone temperature at different growth irradiances. — Plant Stress 4: 14–30, 2010.

    Google Scholar 

  • He, J., Austin, P.T., Nichols, M.A.: Effect of root-zone CO2 on productivity and photosynthesis in aeroponically grown lettuce plants. — Acta Hort. 648: 39–45, 2004.

    Google Scholar 

  • He, J., Austin, P.T., Lee, S.K.: Effects of elevated root zone CO2 and air temperature on photosynthetic gas exchange, nitrate uptake, and total reduced nitrogen content in aeroponically grown lettuce plants. — J. Exp. Bot. 61: 3959–3969, 2010.

    Article  PubMed  CAS  Google Scholar 

  • He, J., Austin, P.T., Nichols, M.A., Lee, S.K.: Elevated rootzone CO2 protects lettuce plants from midday depression of photosynthesis. — Environ. Exp. Bot. 61: 94–110, 2007.

    Article  CAS  Google Scholar 

  • He, J., Chee, C.W., Goh, C. J.: “Photoinhibition” of Heliconia under natural tropical conditions- Importance of leaf orientation for light interception and leaf temperature. — Plant Cell Environ. 19: 1238–1248, 1996.

    Article  Google Scholar 

  • He, J., Chua, N.Y.A., Qin, L.: Interaction between iron stress and root-zone temperature on physiological aspects of aeroponically grown Chinese broccoli (Brassica alboglabra). — J. Plant Nutri. 31: 1–20, 2008.

    Google Scholar 

  • He, J., Lee, S.K.: Growth and photosynthetic characteristics of lettuce (Lactuca sativa L.) grown under fluctuating hot ambient temperature with the manipulation of cool root zone temperature. — J. Plant Physiol. 152: 387–391, 1998a.

    Article  Google Scholar 

  • He, J., Lee, S.K.: Growth and photosynthetic responses of three aeroponically grown lettuce cultivars (Lactuca sativa L.) to different root zone temperatures and growth irradiances under tropical aerial condition. — J. Hort. Sci. Biotech. 73: 173–180, 1998b.

    Google Scholar 

  • He, J., Lee, S.K.: Relationship among photosynthesis, Ribulose- 1,5-bisphosphate carboxylase (Rubisco) and water relations of subtropical vegetable Chinese broccoli grown in the tropics by manipulation of root-zone temperature. — Environ. Exp. Bot. 46: 119–128, 2001.

    Article  CAS  Google Scholar 

  • He, J., Lee, S.K.: Photosynthetic utilization of radiant energy by temperate lettucegrown under natural tropical condition with manipulation of root-zone temperature. — Photosynthetica 42: 457–463, 2004.

    Article  Google Scholar 

  • He, J., Lee, S.K., Dodd, I.C.: Limitations to photosynthesis of lettuce grown under tropical conditions: alleviation by rootzone cooling. — J. Exp. Bot. 52: 1323–1330, 2001.

    Article  PubMed  CAS  Google Scholar 

  • He, J., Tan, L.P., Lee, S.K.: Root-zone temperature effects on photosynthesis, 14C-photoassimilate partitioning and growth of temperate lettuce (Lactuca sativa cv. ‘Panama’) grown in the tropics. — Photosynthetica 47: 95–103, 2009.

    Article  CAS  Google Scholar 

  • Jordan, B.R., He, J., Chow, W.S., Anderson, J.M.: Changes in mRNA levels and polypeptide subunits of ribulose 1,5- biophosphate carboxylase in response to supplementary ultraviolet-B radiation. — Plant Cell Environ. 15: 91–98, 1992.

    Article  CAS  Google Scholar 

  • Kaiser, W.M., Brendle-Behnisch, E.: Rapid modulation of spinach leaf nitrate reductase activity by photosynthesis. I. Modulation in vivo by CO2 availability. — Plant Physiol. 96: 363–367, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S.K.: Aeroponic system as a possible alternative for crop production in Singapore. — Commonwealth Agri. — Digest 3: 1–14, 1993.

    CAS  Google Scholar 

  • Li, Y., Gao, Y., Xu, X. et al: Light-saturated photosynthetic rate in high-nitrogen rice (Oryza sativa L.) leaves is related to chloroplastic CO2 concentration. — J. Exp. Bot. 60: 2351–2360, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Long, S.P., Ainsworth, E.A., Rogers, A., Ort, D.R.: Rising atmospheric carbon dioxide: plants FACE the future. — Annu. Rev. Plant Biol. 55: 591–628, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Makino, A., Mae, T.: Photosynthesis and plant growth at elevated levels of CO2. — Plant Cell Physiol. 40: 999–1006, 1999.

    Article  CAS  Google Scholar 

  • Makino, A., Sakuma, H., Sudo, E., Mae, T.: Differences between maize and rice in N-use efficiency for photosynthesis and protein allocation. — Plant Cell Physiol. 44: 952–956, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Makino, A., Shimada, T., Takumi, S. et al.: Does decrease in ribulose-1,5-bisphosphate carboxylase by antisense rbcS lead to a higher N-use efficiency of photosynthesis under conditions of saturating CO2 and light in rice plants? — Plant Physiol. 114: 483–491, 1997.

    PubMed  CAS  Google Scholar 

  • McGuire, M.A., Marshall, J.D., Teskey, R.O.: Assimilation of xylem-transported 13C-labelled CO2 in leaves and branches of sycamore (Platanus occidentalis L.). — J. Exp. Bot. 60: 3809–3817, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Norby, R.J.: Issues and perspectives for investigating root responses to elevated atmospheric carbon dioxide. — Plant Soil 165: 9–20, 1994.

    Article  CAS  Google Scholar 

  • Norby, R.J., Gunderson, C.A., Wullschleger, S.D. et al.: Productivity and compensatory responses of yellow-poplar trees in elevated CO2. — Nature 357: 322–24, 1992.

    Article  Google Scholar 

  • Norstadt, F.A., Porter, L.K.: Soil gases and temperatures: a beef cattle feedlot compared to alfalfa. — Soil. Sci. Soc. Amer. J. 48: 783–789, 1984.

    Article  CAS  Google Scholar 

  • Pettersson, R., McDonald, J.S.: Effects of nitrogen supply on the acclimation of photosynthesis to elevated CO2. — Photosynth. Res. 39: 389–400, 1994.

    Article  CAS  Google Scholar 

  • Ray, D., Sheshshayee, M.S., Mukhopadhyay, K. et al.: High nitrogen use efficiency in rice genotypes is associated with higher net photosynthetic rate at lower Rubisco content. Biol. — Planta 46: 251–256, 2003.

    Google Scholar 

  • Schurr, U., Heckenberger, U., Herdel, K. et al.: Leaf development in Ricinus communis during drought stress: dynamics of growth processes, of cellular structure and of sink-source transition. — J. Exp. Bot. 51: 1515–1529, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Stitt, M., Schulze, D.: Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular ecophysiology. — Plant Cell Environ. 17: 465–487, 1994.

    Article  CAS  Google Scholar 

  • Tan, L.P., He, J., Lee, S.K.: Effects of root-zone temperature on the root development and nutrient uptake of Lactuca sativa L. cv’ Panama’ grown in an aeroponic system in the tropics. — J. Plant Nutr. 25: 297–314, 2002.

    Article  CAS  Google Scholar 

  • Teskey, R.O., McGuire, M.A.: Carbon dioxide transport in xylem causes errors in estimation of rates of respiration in stems and branches of trees. — Plant Cell Environ. 25: 1571–1577, 2002.

    Article  Google Scholar 

  • Teskey, R.O., McGuire, M.A.: CO2 transported in xylem sap affects CO2 efflux from Liquidambar styraciflua and Platanus occidentalis stems, and contributes to observed wound respiration phenomena. — Trees Struct. Funct. 19: 357–362, 2005.

    Article  Google Scholar 

  • Teskey, R.O., McGuire, M.A.: Measurement of stem respiration of sycamore (Platanus occidentalis L.) trees involves internal and external fluxes of CO2 and possible transport of CO2 from roots. — Plant Cell Environ. 30: 570–579, 2007.

    Article  PubMed  CAS  Google Scholar 

  • van der Merwe, C.A., Cramer, M.D.: The influence of dissolved inorganic carbon in the root-zone on nitrogen uptake and the interaction between carbon and nitrogen metabolism. — In: Louçao, M.A., Lips, S.H. (ed.): Nitrogen in a Sustainable Ecosystem — from the Cell to the Plant. Pp. 145–151. Backhuys Publishers, Leiden 2000.

    Google Scholar 

  • Viktor, A., Cramer, M.D.: Variation in root-zone CO2 concentration modifies isotopic fractionation of carnon and nitrogen in tomato seedlings. — New Phytol. 157: 45–54, 2003.

    Article  CAS  Google Scholar 

  • Woodrow, I.E., Berry, J.A.: Enzymatic regulation of photosynthetic CO2 fixation in C3 plants. — Annu. Rev. Plant Physiol. Plant Mol. Biol. 39: 533–594, 1998.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. He.

Additional information

Acknowledgement: This project was supported by the Academic Research Fund (RP12/01 HJ), Ministry of Education, Singapore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J., Qin, L. & Lee, S.K. Root-zone CO2 and root-zone temperature effects on photosynthesis and nitrogen metabolism of aeroponically grown lettuce (Lactuca sativa L.) in the tropics. Photosynthetica 51, 330–340 (2013). https://doi.org/10.1007/s11099-013-0030-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-013-0030-5

Additional key words

Navigation