Skip to main content
Log in

Grafting onto Cucurbita moschata rootstock alleviates salt stress in cucumber plants by delaying photoinhibition

  • Published:
Photosynthetica

Abstract

To determine how the use of a given rootstock can influence the functioning of the photosynthetic apparatus of the scion under salt stress, the growth, gas exchange, photosystem II (PSII) efficiency, xanthophyll cycle, and chloroplast ultrastructure of nongrafted, self-grafted, and pumpkin-grafted (hereafter referred to as rootstock-grafted) cucumber (Cucumis sativus L.) plants were investigated at day 15 after being treated with 90 mM NaCl. The reductions in plant growth of the rootstock-grafted plants were lower than those of the nongrafted and self-grafted plants under 90 mM NaCl. The net photosynthetic rate, stomatal conductance, maximal and effective quantum yield of PSII photochemistry, photochemical quenching coefficient, and effective quantum-use efficiency of PSII in the light-adapted state of the nongrafted and self-grafted plants were significantly decreased under 90 mM NaCl. However, these reductions were alleviated when the cucumber plants were grafted onto the pumpkin (Cucurbita moschata Duch.) rootstock. The intercellular CO2 concentrations were significantly increased in the nongrafted and self-grafted plants under 90 mM NaCl, whereas it was decreased in the rootstock-grafted plants. Nonphotochemical quenching (NPQ) and the deepoxidation state of the xanthophyll cycle were significantly increased under 90 mM NaCl, particularly in the rootstockgrafted plants, suggesting the rootstock-grafted plants had higher potential to dissipate excess excitation energy and reduce the probability of photodamage to PSII. Under 90 mM NaCl, the number of grana was reduced, the thylakoids were swollen, and starch granules accumulated in all plants. However, the damage of chloroplast ultrastructure was alleviated in the rootstock-grafted plants. Taken together, the use of C. moschata rootstock alleviated salt stress in cucumber plants by delaying photoinhibition, probably due to a lower incidence of both stomatal and nonstomatal factors limiting photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

antheraxanthin

Chl:

chlorophyll

C i :

intercellular CO2 concentration

E :

transpiration rate

Fm :

maximal fluorescence of dark-adapted state

Fm′:

maximal fluorescence of light-adapted state

Fo :

minimal fluorescence of dark-adapted state

Fo′:

minimal fluorescence of light-adapted state

Fs :

steady-state fluorescence yield

Fv :

maximal variable fluorescence

Fv/Fm :

maximal quantum yield of PSII photochemistry

Fv′/Fm′:

effective quantum use efficiency of PSII in the light-adapted state

g s :

stomatal conductance

NPQ:

nonphotochemical quenching of chlorophyll fluorescence

P N :

net photosynthetic rate

PPFD:

photosynthetic photon flux density

PSII:

photosystem II

qP :

photochemical quenching coefficient

V:

violaxanthin

Z:

zeaxanthin

ΦPSII :

effective quantum yield of PSII photochemistry

References

  • Albacete, A., Martínez-Andújar, C., Ghanem, M.E., Acosta, M., Sánchez-Bravo, J., Asíns, M.J., Cuartero, J., Dodd, I.C., Pérez-Alfocea, F.: Rootstock-mediated changes in xylem ionic and hormonal status are correlated with delayed leaf senescence and increased leaf area and crop productivity in salinized tomato. — Plant Cell Environ. 32: 928–938, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Bai, L.P., Zhou, B.L., Li, N., Huo, S.F., Fu, Y.W.: The ion absorption and transportation of grafted eggplants (Solanum melongena L.) under NaCl stress. — Plant Physiol. Commun. 41: 767–769, 2005.

    CAS  Google Scholar 

  • Baker, N.R.: Chlorophyll fluorescence: A probe of photosynthesis in vivo. — Annu. Rev. Plant Biol. 59: 89–113, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams, B., Adams, W.W., III: Photoprotection and other responses of plants to high light stress. — Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 599–626, 1992.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B., Adams, W.W., III: The role of xanthophyll cycle carotenoids in the protection of photosynthesis. — Trends Plant Sci. 1: 21–26, 1996.

    Article  Google Scholar 

  • Edelstein, M., Plaut, Z., Ben-Hur, M.: Sodium and chloride exclusion and retention by nongrafted and grafted melon and Cucurbita plants. — J. Exp. Bot. 62: 177–184, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Estañ, M.T., Martinez-Rodriguez, M.M., Perez-Alfocea, F., Flowers, T.J., Bolarin, M.C.: Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. — J. Exp. Bot. 56: 703–712, 2005.

    Article  PubMed  Google Scholar 

  • Foyer, C.H., Noctor, G.: Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. — Plant Cell 17: 1866–1875, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Ghanem, M.E., Albacete, A., Martínez-Andújar, C., Acosta, M., Romero-Aranda, R., Dodd, I.C., Lutts, S., Pérez-Alfocea, F.: Hormonal changes during salinity-induced leaf senescence in tomato (Solanum lycopersicum L.). — J. Exp. Bot. 59: 3039–3050, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Guo, Y.P., Guo, D.P., Zhou, H.F., Hu, M.J., Shen, Y.G.: Photoinhibition and xanthophyll cycle activity in bayberry (Myrica rubra) leaves induced by high irradiance. — Photosynthetica 44: 439–446, 2006.

    Article  CAS  Google Scholar 

  • He, J., Huang, L.K., Whitecross, M.I.: Chloroplast ultrastructure changes in Pisum sativum associated with supplementary ultraviolet (UV-B) radiation. — Plant Cell Environ. 17: 771–775, 1994.

    Article  Google Scholar 

  • He, Y., Zhu, Z.J., Yang, J., Ni X.L., Zhu B.: Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. — Environ. Exp. Bot. 66: 270–278, 2009.

    Article  CAS  Google Scholar 

  • Hoagland, D.R., Arnon, D.I.: The water-culture method for growing plants without soil. — Calif. Agric. Exp. Stn. Circ. 347: 39, 1950.

    Google Scholar 

  • Huang, Y., Tang, R., Cao, Q.L., Bie, Z.L.: Improving the fruit yield and quality of cucumber by grafting onto the salt tolerant rootstock under NaCl stress. — Sci. Hortic. 122: 26–31, 2009b.

    Article  CAS  Google Scholar 

  • Huang, Y., Zhu, J., Zhen, A., Chen, L., Bie, Z.L.: Organic and inorganic solutes accumulation in the leaves and roots of grafted and ungrafted cucumber plants in response to NaCl stress. — J. Food Agric. Environ. 7: 703–708, 2009a.

    CAS  Google Scholar 

  • Jiang, C.D., Gao, H.Y., Zou, Q., Jiang, G.M., Li, L.H.: Leaf orientation, photorespiration and xanthophyll cycle protect young soybean leaves against high irradiance in field. — Environ. Exp. Bot. 55: 87–96, 2006.

    Article  CAS  Google Scholar 

  • Lee, J.M.: Cultivation of grafted vegetables. I. Current status, grafting methods, and benefits. — HortScience 29: 235–239, 1994.

    Google Scholar 

  • Li, P.M., Cheng, L., Peng, T., Gao, H.Y.: CO2 assimilation and chlorophyll fluorescence in green versus red Berberis thunbergii leaves measured with different quality irradiation. — Photosynthetica 47: 11–18, 2009.

    Article  CAS  Google Scholar 

  • Lu, C.M., Vonshak, A.: Effects of salinity stress on photosystem II function in cyanobacterial Spirulina platensis cells. — Physiol. Plant. 114: 405–413, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence — a practical guide. — J. Exp. Bot. 51: 659–668, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Misra, A.N., Srivastava, A., Strasser, R.J.: Utilization of fast chlorophyll a fluorescence technique in assessing the salt/ion sensitivity of mung bean and Brassica seedlings. — J. Plant Physiol. 158: 1173–1181, 2001.

    Article  CAS  Google Scholar 

  • Neves, J.P.C., Ferreira, L.F.P., Vaz, M.M., Gazarini, L.C.: Gas exchange in the salt marsh species Atriplex portulacoides L. and Limoniastrum monopetalum L. in Southern Portugal. — Acta Physiol. Plant. 30: 91–97, 2008.

    Article  Google Scholar 

  • Niyogi, K.K.: Photoprotection revisited: Genetic and molecular approaches. — Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 333–359, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Ort, D.R., Baker, N.R.: A photoprotective role for O2 as an alternative electron sink in photosynthesis. — Curr. Opin. Plant Biol. 5: 193–198, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Alfocea, F., Albacete, A., Ghanem, M.E., Dodd, I.C.: Hormonal regulation of source-sink relations to maintain crop productivity under salinity: a case study of root-to-shoot signalling in tomato. — Funct. Plant Biol. 37: 592–603, 2010.

    Article  Google Scholar 

  • Pfündel, E., Bilger, W.: Regulation and possible function of the violaxanthin cycle. — Photosynth. Res. 42: 89–109, 1994.

    Article  Google Scholar 

  • Qiu, N.W., Lu, Q.T., Lu, Q.M.: Photosynthesis, photosystem II efficiency and the xanthophyll cycle in the salt-adapted halophyte Atriplex centralasiatica. — New Phytol. 159: 479–486, 2003.

    Article  CAS  Google Scholar 

  • Reynolds, E.S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. — J. Cell Biol. 17: 208–212, 1963.

    Article  PubMed  CAS  Google Scholar 

  • Salama, S., Trivedi, S., Busheva, M., Arafa, A.A., Garab, G., Erdei, L.: Effects of NaCl salinity on growth, cation accumulation, chloroplast structure and function in wheat cultivars differing in salt tolerance. — J. Plant Physiol. 144: 241–247, 1994.

    Article  CAS  Google Scholar 

  • Shabala, S., Cuin, T.A.: Potassium transport and plant salt tolerance. — Physiol. Plant. 133: 651–669, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Strid, A., Chow, W.S., Anderson, J.M.: Effects of supplementary ultraviolet-B radiation on photosynthesis in Pisum sativum. — Biochem. Biophys. Acta 1020: 260–268, 1990.

    Article  CAS  Google Scholar 

  • Xia, J.R., Li, Y.J., Zou, D.H.: Effects of salinity stress on PSII in Ulva lactuca as probed by chlorophyll fluorescence measurements. — Aquat. Bot. 80: 129–137, 2004.

    Article  CAS  Google Scholar 

  • Yamaguchi, T., Blumwald, E.: Developing salt-tolerant crop plants: challenges and opportunities. — Trends Plant Sci. 10: 615–620, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Yang, X.H., Liang, Z., Wen, X.G., Lu, C.M.: Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. — Plant Mol. Biol. 66: 73–86, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Yetisir, H., Uygur, V.: Responses of grafted watermelon onto different gourd species to salinity stress. — J. Plant Nutr. 33: 315–327, 2010.

    Article  CAS  Google Scholar 

  • Zhang, R.H., Li, J., Guo, S.R., Tezuka, T.: Effects of exogenous putrescine on gas-exchange characteristics and chlorophyll fluorescence of NaCl-stressed cucumber seedlings. — Photosynth. Res. 100: 155–162, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Zhen, A., Bie, Z.L., Huang, Y., Liu, Z.X., Li, Q.: Effects of scion and rootstock genotypes on the anti-oxidant defense systems of grafted cucumber seedlings under NaCl stress. — Soil Sci. Plant Nutr. 56: 263–271, 2010.

    Article  CAS  Google Scholar 

  • Zhou, Y.H., Mao, W.H., Zhang, Y.Y., Huang, L.F., Hu, W.H., Yu J.Q.: Role of thermal dissipation in the photoprotection in cucumber plants after exposure to a chill stress. — Photosynthetica 44: 262–267, 2006.

    Article  CAS  Google Scholar 

  • Zhu, J., Bie, Z.L., Huang, Y., Han, X.Y.: Effect of grafting on the growth and ion concentrations of cucumber seedlings under NaCl stress. — Soil Sci. Plant Nutr. 54: 895–902, 2008a.

    Article  CAS  Google Scholar 

  • Zhu, J., Bie, Z.L., Li, Y.N.: Physiological and growth responses of two different salt-sensitive cucumber cultivars to NaCl stress. — Soil Sci. Plant Nutr. 54: 400–407, 2008b.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. L. Bie.

Additional information

Acknowledgements: This work was supported by the 973 Project of China (2009CB119000), the National Natural Science Foundation of China (30871738), the Key Project of the Chinese Ministry of Education (109113) and the Natural Science Foundation of Hubei Province (2008CDB081).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z.X., Bie, Z.L., Huang, Y. et al. Grafting onto Cucurbita moschata rootstock alleviates salt stress in cucumber plants by delaying photoinhibition. Photosynthetica 50, 152–160 (2012). https://doi.org/10.1007/s11099-012-0007-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-012-0007-9

Additional key words

Navigation