Skip to main content
Log in

Photosynthesis, leaf morphology and chemistry of Pinus koraiensis and Quercus mongolica in broadleaved Korean pine mixed forest

  • Published:
Photosynthetica

Abstract

Leaf traits and physiology are species-specific and various with canopy position and leaf age. Leaf photosynthesis, morphology and chemistry in the upper and lower canopy positions of Pinus koraiensis Sieb. et Zucc and Quercus mongolica Fisch. ex Turoz in broadleaved Korean pine forest were determined in September 2009. Canopy position did not significantly affect light-saturated photosynthetic rate based on unit area (P area) and unit dry mass (P mass), apparent quantum yield (α), light compensation point (LCP), light saturation point (LSP); total nitrogen (Nm), phosphorus (Pm), carbon (Cm), and chlorophyll content (Chlm) per unit dry mass; leaf dry mass per unit area (LMA) and photosynthetic nitrogen-use efficiency (PNUE) for P. koraiensis current-year needles and Q. mongolica leaves. While in P. koraiensis one-year-old needles, P area, P mass, α and LCP in the upper canopy were lower than those in the lower canopy. The needles of P. koraiensis had higher Cm and LMA than leaves of Q. mongolica, but P mass, Chlm and PNUE showed opposite trend. There were no differences in P area, LSP, Nm, and Pm between the two species. Needle age significantly influenced photosynthetic parameters, chemistry and LMA of P. koraiensis needles except LCP, LSP and Cm. In contrast to LMA, P area, P mass, Nm, Pm, Chlm, and PNUE of one-year-old needles were significantly lower than those of current-year needles for P. koraiensis. The negative correlations between LMA and P mass, Nm, Pm, Chlm, and positive correlations between P mass and Nm, Pm, Chlm were found for P. koraiensis current-year needles and Q. mongolica leaves. Our results indicate that leaf nitrogen and phosphorus contents and nutrient absorption from soil are similar for mature P. koraiensis and Q. mongolica growing in the same environment, while difference in carbon content between P. koraiensis and Q. mongolica may be attributed to inherent growth characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Cm :

total carbon content per unit dry mass

Chl:

chlorophyll

Chlm :

chlorophyll content per unit dry mass

DM:

dry mass

LCP:

light compensation point

LMA:

leaf dry mass per unit area

LSP:

light saturation point

Nm :

total nitrogen content per unit dry mass

P area :

light saturated photosynthetic rate per unit area

Pm :

total phosphorus content per unit dry mass

P mass :

light saturated photosynthetic rate per unit dry mass

P N :

net photosynthetic rate

PNUE:

photosynthetic nitrogen-use efficiency

PPFD:

photosynthetic photon flux density

R D :

dark respiration rate per unit area

α:

apparent quantum yield

θ:

the convexity of the light response curve

References

  • Atkin, O.K., Atkinson, L.J., Fisher, R.A., Campbell, C.D., Zaragoza-Castells, J., Pitchford, J.W., Woodward, F.I., Hurry, V.: Using temperature-dependent changes in leaf scaling relationships to quantitatively account for thermal acclimation of respiration in a coupled global climate-vegetation model. — Glob. Change Biol. 14: 2709–2726, 2008.

    Google Scholar 

  • Arnon, D.I.: Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. — Plant Physiol. 24: 1–15, 1949.

    Article  PubMed  CAS  Google Scholar 

  • Baldocchi, D.D., Wilson, K.B.: Modeling CO2 and water vapour exchange of a temperate broadleaved forest on daily to decadal time scales. — Ecol. Modell. 142: 155–184, 2001.

    Article  CAS  Google Scholar 

  • Bao, S.D.: [Soil and Agricultural Chemistry Analysis.] — China Agricultural Press, Beijing 2000. [In Chin.]

    Google Scholar 

  • Björkman, O.: Responses to different quantum flux densities. — In: Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H. (ed.): Physiological Plant Ecology I. Pp. 57–107. Springer-Verlag, Berlin — Heidelberg — New York 1981.

    Chapter  Google Scholar 

  • Bond, B.J., Farnsworth, B.T., Coulombe, R.A., Winner, W.E.: Foliage physiology and biochemistry in response to light gradients in conifers with varying shade tolerance. — Oecologia 120: 183–192, 1999.

    Article  Google Scholar 

  • Coste, S., Roggy, J.C., Imbert, P., Born, C., Bonal, D., Dreyer, E.: Leaf photosynthetic traits of 14 tropical rain forest species in relation to leaf nitrogen concentration and shade tolerance. — Tree Physiol. 25: 1127–1137, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Davi, H., Barbaroux, C., Dufrêne, E., Francois, C., Montpied, P., Brćda, N., Badeck, F.: Modeling leaf mass per area in forest canopy as affected by prevailing radiation conditions. — Ecol. Modell. 211: 339–349, 2008.

    Article  Google Scholar 

  • Ellsworth, D.S., Reich, P.B.: Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. — Oecologia 96: 169–178, 1993.

    Article  Google Scholar 

  • Evans, J.R.: Photosynthesis and nitrogen relationships in leaves of C3 plants. — Oecologia 78: 9–19, 1989.

    Article  Google Scholar 

  • Fredericksen, T.S., Steiner, K.C., Skelly, J.M., Joyce, B.J., Kolb, T.E., Kouterick, K.B., Ferdinand, J.A.: Diel and seasonal patterns of leaf gas exchange and xylem water porentials of different-sized Prunus serotina Ehrh. trees. — Forest Sci. 42: 359–365, 1996.

    Google Scholar 

  • Field, C.: Allocation leaf nitrogen for the maximization of carbon gain: leaf age as a control on the allocation program. — Oecologia 56: 341–347, 1983.

    Article  Google Scholar 

  • Field, C., Merino, J., Mooney, H.A.: Compromises between water-use efficiency and nitrogen-use efficiency in five species of California evergreens. — Oecologia 60: 84–89, 1983.

    Article  Google Scholar 

  • Field, C., Mooney, H.A.: The photosynthesis-nitrogen relationship in wild plants. — In: Givnish, T. (ed.): On the Economy of Plant Form and Function. Pp. 25–55. Cambridge Univ. Press, Cambridge — London — New York — New Rochelle — Melbourne — Sydney 1986.

    Google Scholar 

  • Fu, Q.S., Zhao, B., Wang, Y.J., Ren, S., Guo, Y.D.: Stomatal development and associated photosynthetic performance of capsicum in response to differential light availabilities. — Photosynthetica 48: 189–198, 2010.

    Article  CAS  Google Scholar 

  • Givnish, T.J.: Adaptation to sun and shade: a whole-plant perspective. — Aust. J. Plant Physiol. 15: 63–92, 1988.

    Article  Google Scholar 

  • Green, D.S., Kruger, E.L.: Light-mediated constraints on leaf function correlate with leaf structure among deciduous and evergreen tree species. — Tree Physiol. 21: 1341–1346, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Gulmon, S.L., Chu, C.C.: The effects of light and nitrogen on photosynthesis, leaf characteristics and dry matter allocation in the Chaparral shrub, Diplacus aurantiacus. — Oecologia 49: 207–212, 1981.

    Article  Google Scholar 

  • Han, Q., Kawasaki, T., Nakano, T., Chiba, Y.: Leaf-age effects on seasonal variability in photosynthetic parameters and its relationships with leaf mass per area and leaf nitrogen concentration within a Pinus densiflora crown. — Tree Physiol. 28: 551–558, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Hanson, H.C.: Leaf-structure as related to environment. — Amer. J. Bot. 4: 533–560, 1917.

    Article  Google Scholar 

  • Herrick, J.D., Thomas, R.B.: Effects of CO2 enrichment on the photosynthetic light response of sun and shade leaves of canopy sweetgum trees (Liquidambar styaciflua) in a forest ecosystem. — Tree Physiol. 19: 779–786, 1999.

    PubMed  Google Scholar 

  • Hikosaka, K.: Interspecific difference in the photosynthesisnitrogen relationship: Patterns, physiological causes, and ecological importance. — J. Plant Res. 117: 481–494, 2004.

    Article  PubMed  Google Scholar 

  • Hikosaka, K.: Leaf canopy as a dynamic system: Ecophysiology and Optimality in leaf turnover. — Ann. Bot. 95: 521–533, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Hikosaka, K., Hirose, T.: Photosynthetic nitrogen-use efficiency in evergreen broad-leaved woody species coexisting in a warm-temperate forest. — Tree Physiol. 20: 1249–1254. 2000.

    PubMed  CAS  Google Scholar 

  • Hollinger, D.Y.: Canopy organization and foliage photosynthetic capacity in a broad-leaved evergreen montane forest. — Funct. Ecol. 3: 53–62, 1989.

    Article  Google Scholar 

  • Hollinger, D.Y.: Optimality and nitrogen allocation in a tree canopy. — Tree Physiol. 16: 627–634, 1996.

    PubMed  Google Scholar 

  • Horton, J.L., Hart, S.C.: Hydraulic lift: a potentially important ecosystem process. — Trends Ecol. Evol. 13: 232–235, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Jach, M.E., Ceulemans, R.: Effects of season, needle age and elevated atmospheric CO2 on photosynthesis in Scots pine (Pinus sylvestris). — Tree Physiol. 20: 145–157, 2000.

    PubMed  CAS  Google Scholar 

  • Jayasekera, R., Schleser, G.H.: Seasonal changes in potential net photosynthesis of sun and shade leaves of Fagus sylvatica L. — J. Plant Physiol. 133: 216–221, 1988.

    Article  Google Scholar 

  • Kazda, M., Salzer, J., Reiter, I.: Photosynthetic capacity in relation to nitrogen in the canopy of a Quercus robur, Fraxinus angustifolia and Tilia cordata flood plain forest. — Tree Physiol. 20: 1029–1037, 2000.

    PubMed  CAS  Google Scholar 

  • Koike, T., Kitao, M., Maruyama, Y., Mori, S., Thomas, T.L.: Leaf morphology and photosynthetic adjustments among deciduous broad-leaved trees within the vertical canopy profile. — Tree physiol. 21: 951–958, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Kull, O., Niinemets, U.: Distribution of leaf photosynthetic properties in tree canopies: comparison of species with different shade tolerance. — Funct. Ecol. 12: 472–479, 1998.

    Article  Google Scholar 

  • Leuning, R., Wang, Y.P., Cromer, R.N.: Model simulations of spatial distributions and daily totals of photosynthesis in Eucalyptus grandis canopies. — Oecologia 88: 494–503, 1991.

    Google Scholar 

  • Lewandowska, M., Jarvis, P.G.: Changes in chlorophyll and carotenoid content, specific leaf area and dry weight fraction in Sitka spruce, in response to shading and season. — New Phytol. 79: 247–256, 1977.

    Article  CAS  Google Scholar 

  • Lewis, J.D., McKane, R.B., Tingey, D.T., Beedlow, P.A.: Vertical gradients in photosynthetic light response within an old-growth Douglas-fir and western hemlock canopy. — Tree Physiol. 20: 447–456, 2000.

    PubMed  Google Scholar 

  • Liao, J.-X., Ge, Y., Huang, C.-C., Zhang, J., Liu, Q.-X., Chang, J.: Effects of irradiance on photosynthetic and growth of Mosla Chinensis and M. scabra. — Photosynthetica 43: 111–115, 2005.

    Article  Google Scholar 

  • Loomis, R.S.: On the utility of nitrogen in leaves. — Proc. Nat. Acad. Sci. USA 94: 13378–13379, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Loustau, D., Brahim, M.B., Gaudillère, J.P., Dreyer, L.: Photosynthetic responses to phosphorus nutrition in two-year-old maritime pine seedlings. — Tree Physiol. 19: 707–715, 1999.

    PubMed  Google Scholar 

  • Luo, T.X., Luo, J., Pan, Y.: Leaf traits and associated ecosystem characteristics across subtropical and timberline forests in the Gongga Mountains. — Oecologia 142: 261–273, 2005.

    Article  PubMed  Google Scholar 

  • McGarvey, R.C., Martin, T.A., White, T.L.: Integrating withincrown variation in net photosynthesis in loblolly and slash pine families. — Tree Physiol. 24: 1209–1220, 2004.

    Article  PubMed  Google Scholar 

  • Medhurst, J.L., Beadle, C.L.: Photosynthetic capacity and foliar nitrogen distribution in Eucalyptus nitens is altered by highintensity thinning. — Tree Physiol. 25: 981–991, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Mediavilla, S., Escudero, A.: Photosynthetic capacity, integrated over the lifetime of a leaf, is predicted to be independent of leaf longevity in some tree species. — New Phytol. 159: 203–211, 2003.

    Article  Google Scholar 

  • Meir, P., Kruijt, B., Broadmeadow, M., Barbosa, E., Kull, O., Nobre, A., Jarvis, P.: Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area. — Plant Cell Environ. 25: 343–357, 2002.

    Article  Google Scholar 

  • Meng, Ch., Xu, M.Ch., Li, J.X., Gao, S.P.: Spatial heterogeneity of photosynthetic characteristics of Castanopsis fargesii canopy. — Chin. J. Appl. Ecol. 18: 1932–1936, 2007.

    CAS  Google Scholar 

  • Niinemets, Ü.: Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. — Ecology 82: 453–469, 2001.

    Article  Google Scholar 

  • Niinemets, Ü., Cescatti, A., Rodeghiero, M., Tosens, T.: Complex adjustments of photosynthetic potentials and internal diffusion conductance to current and previous light availabilities and leaf age in Mediterranean evergreen species Quercus ilex. — Plant Cell Environ. 29: 1159–1178, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Niinemets, Ü., Portsmuth, A., Truus, L.: Leaf structural and photosynthetic characteristics, and biomass allocation to foliage in relation to foliar nitrogen and tree size in three Betula species. — Ann. Bot. 89: 191–204, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Niinemets, Ü., Tenhunen, J.D.: A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. — Plant Cell Environ. 20: 845–866, 1997.

    Article  Google Scholar 

  • Oguchi, R., Hikosaka, K., Hirose, T.: Does the photosynthetic light-acclimation need change in leaf anatomy? — Plant Cell Environ. 26: 505–512, 2003.

    Article  Google Scholar 

  • Palmroth, S., Hari, P.: Evaluation of the importance of acclimation of needle structure, photosynthesis, and respiration to available photosynthetically active radiation in a Scots pine canopy. — Can. J. Forest Res. 31: 1235–1243, 2001.

    Article  Google Scholar 

  • Pons, T.L., Pearcy, R.W.: Nitrogen reallocation and photosynthetic acclimation in response to partial shading in soybean plants. — Physiol. Plant. 92: 636–644, 1994.

    Article  CAS  Google Scholar 

  • Poorter, H., Evans, J.R.: Photosynthetic nitrogen-use efficiency of species that differ inherently in specific area. — Oecologia 116: 26–37, 1998.

    Article  Google Scholar 

  • Proietti, P., Famiani, F.: Diurnal and seasonal changes in photosynthetic characteristics in different olive (Olea europaea L.) cultivars. — Photosynthetica 40: 171–176, 2002.

    Article  CAS  Google Scholar 

  • Reich, P.B., Kloeppel, B.D., Ellsworth, D.S., Walters, M.B.: Different photosynthesis-nitrogen relations in deciduous hardwood and evergreen coniferous tree species. — Oecologia 104: 24–30, 1995.

    Article  Google Scholar 

  • Reich, P.B., Ellsworth, D.S., Walters, M.B.: Leaf structure (specific leaf area) modulates photosynthesis-nitrogen relations: evidence from within and across species and functional groups. — Funct. Ecol. 12: 948–958, 1998.

    Article  Google Scholar 

  • Reich, P.B., Ellsworth, D.S., Walters, M.B., Vose, J.M., Gresham, C., Volin, J.C., Bowman, W.D.: Generality of leaf trait relationships: a test across six biomes. — Ecology 80: 1955–1969, 1999.

    Article  Google Scholar 

  • Reich, P.B., Walters, M.B., Ellsworth, D.S.: Leaf lifespan as a determination of leaf structure and function among 23 Amazonian tree species. — Oecologia 86: 16–24, 1991.

    Article  Google Scholar 

  • Reich, P.B., Walters, M.B., Ellsworth, D.S.: Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. — Ecol. Monogr. 62: 365–192, 1992.

    Article  Google Scholar 

  • Reich, P.B., Walters, M.B., Ellsworth, D.S.: From tropics to tundra: Global convergence in plant functioning. — Proc. Nat. Acad. Sci. 94: 13730–13734, 1997.

    Article  PubMed  CAS  Google Scholar 

  • Schoettle, A.W., Smith, W.K.: Interrelation between shoot characteristics and solar irradiance in the crown of Pinus contorta ssp. latifolia. — Tree Physiol. 9: 245–254, 1998.

    Google Scholar 

  • Sheriff, D.W., Nambiar, E.K.S.: Nitrogen nutrition, growth and gas exchange in Eucalyptus globulus Labill. seedlings. — Aust. J. Plant Physiol. 18: 37–52, 1991.

    Article  CAS  Google Scholar 

  • Sullivan, N.H., Bolstad, P.V., Vose, J.M: Estimates of net photosynthetic parameters for twelve tree species in mature forests of the southern Appalachians. — Tree Physiol. 16: 397–406, 1996.

    PubMed  CAS  Google Scholar 

  • Sun, S.C., Chen, L.Z.: [Leaf nutrient dynamics and resorption efficiency of Quercus liaotungensis in the Dongling Mountain region.] — Acta Phytoecol. Sin. 25: 76–82, 2001. [In Chin.]

    Google Scholar 

  • Takashima, T., Hikosaka, K., Hirose, T.: Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. — Plant Cell Environ. 27: 1047–1054, 2004.

    Article  CAS  Google Scholar 

  • Terashima, I., Miyazawa, S.I., Hanba, Y.T.: Why are sun leaves thicker than shade leaves? Consideration based on analyses of CO2 diffusion in the leaf. — J. Plant Res. 114: 93–105, 2001.

    Article  CAS  Google Scholar 

  • Tissue, D.T., Griffin, K.L., Turnbull, M.H., Whitehead, D.: Stomatal and non-stomatal limitations to photosynthesis in four tree species in a temperate rainforest dominated by Dacrydium cupressinum in New Zealand. — Tree Physiol. 25: 447–456, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Tissue, D.T., Kevin, L.G., Matthew, H.T., David, W.: Canopy position and needle age affect photosynthetic response in field-grown Pinus radiate after five years of exposure to elevated carbon dioxide partial pressure. — Tree Physiol. 21: 915–923, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Westoby, M.: Phylogenetic ecology at world scale, a new fusion between ecology and evolution. — Ecology 87: 163–166, 2006.

    Article  Google Scholar 

  • Wright, I.J., Reich, P.B., Cornelissen, J.H.C., Falster, D.S., Garnier, E., Hikosaka, K., Lamont, B.B., Lee, W., Oleksyn, J., Osada, N., Poorter, H., Villar, R., Warton, D.I., Westoby, M.: Assessing the generality of global leaf trait relationships. — New Phytol. 166: 485–496, 2005.

    Article  PubMed  Google Scholar 

  • Wright, I.J., Reich, P.B., Westoby, et al.: The worldwide leaf economics spectrum. — Nature 428: 82l–827, 2004.

    Google Scholar 

  • Wright, I.J., Westoby, M.: Leaves at low versus high rainfall: coordination of structure, lifespan and physiology. — New Phytol. 155: 403–416, 2002.

    Article  Google Scholar 

  • Yoder, B.J., Ryan, M.G., Waring, R.H., Schoettle, A.W., Kaufmann, M.R.: Evidence of reduced photosynthetic rates in old trees. — Forest Sci. 40: 513–527, 1994.

    Google Scholar 

  • Zhang, M., Yu, G.R., Zhang, L.M., Sun, X.M., Wen, X.F., Han, S.J.: [Effects of solar radiation of net ecosystem exchange of broadleaved-Korean pine mixed forest in Changbai Mountain, China.] — Chin. J. Plant Ecol. 33: 270–282, 2009. [In Chin.]

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. M. Zhou.

Additional information

Acknowledgements: The authors are grateful to Guozheng Song for maintaining the experiment. This study was supported by key program of National Natural Science Foundation of China (40930107) and Knowledge Innovation Program of Chinese Academy of Sciences (KZCXZ-YW-JC 404).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, X.B., Wu, J., Han, S.J. et al. Photosynthesis, leaf morphology and chemistry of Pinus koraiensis and Quercus mongolica in broadleaved Korean pine mixed forest. Photosynthetica 50, 56–66 (2012). https://doi.org/10.1007/s11099-012-0005-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-012-0005-y

Additional key words

Navigation