Skip to main content

Advertisement

Log in

Pigment composition and functional state of the thylakoid membranes during preparation of samples for pigment-protein complexes separation by nondenaturing gel electrophoresis

  • Brief Communication
  • Published:
Photosynthetica

Abstract

The present study was conducted to examine changes in photosynthetic pigment composition and functional state of the thylakoid membranes during the individual steps of preparation of samples that are intended for a separation of pigmentprotein complexes by nondenaturing polyacrylamide gel electrophoresis. The thylakoid membranes were isolated from barley leaves (Hordeum vulgare L.) grown under low irradiance (50 μmol m−2 s−1). Functional state of the thylakoid membrane preparations was evaluated by determination of the maximal photochemical efficiency of photosystem (PS) II (FV/FM) and by analysis of excitation and emission spectra of chlorophyll a (Chl a) fluorescence at 77 K. All measurements were done at three phases of preparation of the samples: (1) in the suspensions of osmotically-shocked broken chloroplasts, (2) thylakoid membranes in extraction buffer containing Tris, glycine, and glycerol and (3) thylakoid membranes solubilized with a detergent decyl-β-D-maltosid. FV/FM was reduced from 0.815 in the first step to 0.723 in the second step and to values close to zero in solubilized membranes. Pigment composition was not pronouncedly changed during preparation of the thylakoid membrane samples. Isolation of thylakoid membranes affected the efficiency of excitation energy transfer within PSII complexes only slightly. Emission and excitation fluorescence spectra of the solubilized membranes resemble spectra of trimers of PSII light-harvesting complexes (LHCII). Despite a disrupted excitation energy transfer from LHCII to PSII antenna core in solubilized membranes, energy transfer from Chl b and carotenoids to emission forms of Chl a within LHCII trimers remained effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

Cars:

carotenoids

Chl:

chlorophyll

Dm:

decyl-β-D-maltosid

FV/FM :

maximal photochemical efficiency of photosystem II

LHCII:

light-harvesting complexes of photosystem II

PPCs:

pigment-protein complexes

PSI and PSII:

photosystem I and II

RES1 and RES2:

resuspension medium 1 and 2

VAZ:

the pool of xanthophyll cycle pigments (violaxanthin + antheraxanthin + zeaxanthin)

References

  • Andreeva, A., Abarova, S., Stoitchkova, K., Busheva, M.: Model for fluorescence quenching in light harvesting complex II in different aggregation states. — Eur. Biophys. J. 38: 199–208, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Ballottari, M., Dall’Osto, L., Morosinotto, T., Bassi, R.: Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. — J. Biol. Chem. 282: 8947–8958, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Bassi, R., Pineau, B., Dainese, P., Marquardt, J.: Carotenoidbinding proteins of photosystem II. — Eur. J. Biochem. 212: 297–303, 1993.

    Article  CAS  PubMed  Google Scholar 

  • Buschmann, C.: Variability and application of the chlorophyll fluorescence emission ratio red/far red of leaves. — Photosynth. Res. 92: 261–271, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Čajánek, M., Navrátil, M., Kurasová, I., Kalina, J., Špunda, V.: The development of antenna complexes of barley (Hordeum vulgare cv. Akcent) under different light conditions as judged from the analysis of 77 K chlorophyll a fluorescence spectra. — Photosynth. Res. 74: 121–133, 2002.

    Article  PubMed  Google Scholar 

  • Dreyfuss, B.W., Thornber, J.P.: Assembly of the lightharvesting complexes (LHCs) of photosystem II — monomeric LHC IIB complexes are intermediates in the formation of oligomeric LHC IIB complexes. — Plant Physiol. 106: 829–839, 1994.

    CAS  PubMed  Google Scholar 

  • Dunn, J.L., Turnbull, J.D., Robinson, S.A.: Comparison of solvent regimes for the extraction of photosynthetic pigments from leaves of higher plants. — Funct. Plant Biol. 31: 195–202, 2004.

    Article  CAS  Google Scholar 

  • Färber, A., Jahns, P.: The xanthophyll cycle of higher plants: influence of antenna size and membrane organization. — Biochim. Biophys. Acta 1363: 47–58, 1998.

    Article  PubMed  Google Scholar 

  • Ferraro, F., Castagna, A., Soldatini, G.F., Ranieri, A.: Tomato (Lycopersicon esculentum M.) T3238FER and T3238fer genotypes. Influence of different iron concentrations on thylakoid pigment and protein composition. — Plant Sci. 164: 783–792, 2003.

    Article  CAS  Google Scholar 

  • Hemelrijk, P.W., Kwa, S.L.S., van Grondelle, R., Dekker, J.P.: Spectroscopic properties of LHC-II, the main light-harvesting chlorophyll a/b protein complex from chloroplast membranes. — Biochim. Biophys. Acta 1098: 159–166, 1992.

    Article  CAS  Google Scholar 

  • IlÍk, P., Krchňák, P., Tomek, P., Nauš, J.: 2-D gel densitometer for high-contrast and selective imaging of chlorophyllcontaining protein complexes separated by non-denaturing polyacrylamide gel electrophoresis. — J. Biochem. Biophys. Methods 51: 273–281, 2002.

    Article  PubMed  Google Scholar 

  • Kurasová, I., Kalina, J., Urban, O., Štroch, M., Špunda, V.: Acclimation of two distinct plant species, spring barley and Norway spruce, to combined effect of various irradiance and CO2 concentration during cultivation in controlled environment. — Photosynthetica 41: 513–523, 2003.

    Article  Google Scholar 

  • Lee, A.L.C., Thornber, J.P.: Analysis of the pigment stoichiometry of pigment-protein complexes from barley (Hordeum vulgare) — the xanthophyll cycle intermediates occur mainly in the light-harvesting complexes of photosystem I and photosystem II. — Plant Physiol. 107: 565–574, 1995.

    Article  CAS  PubMed  Google Scholar 

  • Leegood, R.C., Malkin, R.: Isolation of sub-cellular photosynthetic systems. — In: Hipkins, M.F., Baker, N.R. (ed.): Photosynthesis Energy Transduction: a Practical Approach. Pp. 9–26. IRL Press, Oxford 1986.

    Google Scholar 

  • Lichtenthaler, H.K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. — In: Colowick, S.P., Kaplan, N.O. (ed.): Methods in Enzymology 148. Pp. 350–382. Academic Press, San Diego — New York — Berkeley — Boston — London — Sydney — Tokyo — Toronto 1987.

    Google Scholar 

  • Naqvi, K.R., Melø, T.B., Raju, B.B., Jávorfi, T., Garab, G.: Comparison of the absorption spectra of trimers and aggregates of chlorophyll a/b light-harvesting complex LHC II. — Spectrochim. Acta A 53: 1925–1936, 1997.

    Article  Google Scholar 

  • Peter, G.F., Thornber, J.P.: Biochemical composition and organization of higher plant photosystem II light-harvesting pigment-proteins. — J. Biol. Chem. 266: 16745–16754, 1991.

    CAS  PubMed  Google Scholar 

  • Quiles, M.J., GarcÍa, A., Cuello, J.: Localization of the chloroplast NAD(P)H dehydrogenase complex in stroma thylakoids from barley. — Plant Sci. 146: 17–25, 1999.

    Article  CAS  Google Scholar 

  • Ruban, A.V., Calkoen, F., Kwa, S.L.S., van Grondelle, R., Horton, P., Dekker, J.P.: Characterisation of LHC II in the aggregated state by linear and circular dichroism spectroscopy. — Biochim. Biophys. Acta 1321: 61–70, 1997.

    Article  CAS  Google Scholar 

  • Shi, Q., Jackowski, G.: One-dimensional polyacrylamide gel electrophoresis. — In: Hames, B.D. (ed.): Gel Electrophoresis of Proteins. Pp. 1–52. Oxford University Press, Oxford — New York — Tokyo 1998.

    Google Scholar 

  • Štroch, M., Čajánek, M., Kalina, J., Špunda, V.: Regulation of the excitation energy utilization in the photosynthetic apparatus of chlorina f2 barley mutant grown under different irradiances. — J. Photochem. Photobiol. B: Biol. 75: 41–50, 2004.

    Article  Google Scholar 

  • Štroch, M., Podolinská, J., Navrátil, M., Špunda, V.: Effects of different excitation and detection spectral regions on room temperature chlorophyll a fluorescence parameters. — Photosynthetica 43: 411–416, 2005.

    Article  Google Scholar 

  • Štroch, M., Kuldová, K., Kalina, J., Špunda, V.: Dynamics of the xanthophyll cycle and non-radiative dissipation of absorbed light energy during exposure of Norway spruce to high irradiance. — J. Plant Physiol. 165: 612–622, 2008.

    Article  PubMed  Google Scholar 

  • Thayer, S.S., Björkman, O.: Carotenoid distribution and deepoxidation in thylakoid pigment-protein complexes from cotton leaves and bundle-sheath cells of maize. — Photosynth. Res. 33: 213–225, 1992.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Piskořová for technical assistance. This work was supported by the Grant Agency of Czech Republic (522/07/P246), Ministry of Education, Youth and Sports of the Czech Republic (MSM 6198959215) and by the Palacky University (student project PrF_2010_050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Štroch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karlický, V., Podolinská, J., Nadkanská, L. et al. Pigment composition and functional state of the thylakoid membranes during preparation of samples for pigment-protein complexes separation by nondenaturing gel electrophoresis. Photosynthetica 48, 475–480 (2010). https://doi.org/10.1007/s11099-010-0063-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-010-0063-y

Additional key words

Navigation