Skip to main content
Log in

Modelling of carbon isotope discrimination by vegetation

  • Original Papers
  • Published:
Photosynthetica

Abstract

The paper presents a simple box model simulating the temporal variation of atmospheric 13CO2 concentration, atmospheric CO2 mixing ratio and 13C content of plant material. The model is driven by observed meteorological and measured biosphere-atmosphere CO2 exchange data. The model was calibrated and validated using measurements from a Hungarian atmospheric monitoring station. The simulated atmospheric stable carbon isotope ratio data agreed well with the measured ratios considering both the magnitude and the seasonal dynamics. Observed deviations between the measured and simulated δ13Cair values were systematically negative in winters, while deviations were random in sign and smaller by an order of magnitude during periods when the vegetation was photosynthetically active. This difference, supported by a significant correlation between the deviation and modeled fossil fuel contributions to CO2 concentration, suggests the increased contribution of 13C-depleted fossil fuel CO2 from heating and the lower boundary layer heights during winter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c:

mixing ratio

E:

transpiration rate

FT:

airmixing function

g :

gaseous conductance

GPP:

gross primary production

L:

likelihood

LE:

latent heat flux

MC :

average molar mass of carbon

NEE:

net ecosystem exchange

NPP:

net primary production

p:

pressure

PBL:

planetary boundary layer height

R:

gas constant

rad:

global radiation

RMSE:

root mean square error

T:

temperature

TNBL:

top of the nocturnal boundary layer

TR:

total ecosystem respiration

TRL:

top of the residual layer

VPD:

vapor pressure deficit

γ:

adiabatic temperature lapse rate

δ13C–13C:

isotopic abundance

Δ:

discrimination against 13CO2

References

  • Baldocchi, D. D., Falge, E., Gu, L.H., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, J. W., Oechel, W., Pilegaard, K., Schmid, H.P., Valentini, R., Verma, S., Vesala, T., Wilson, K., Wofsy, S.: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor and energy flux densities. — Bull. Am. Meteorol. Soc. 82: 2415–2434, 2001.

    Article  Google Scholar 

  • Bowling, D.R., Pataki, D.E., Randerson J.T.: Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. — New Phytol. 178: 24–40, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Chen, B.Z., Chen, J.M., Tans, P.P., Huang, L.: Simulating dynamics of-C-13 of CO2 in the planetary boundary layer over a boreal forest region: covariation between surface fluxes and atmospheric mixing. — Tellus Series B-Chem. Phys. Meteorol. 58: 537–549, 2006.

    Article  CAS  Google Scholar 

  • Farquhar, G.D., von Caemmerer, S., Berry J.A.: A biochemicalmodel of photosynthetic CO2 assimilation in leaves of C3 species. — Planta 149: 78–90, 1980.

    Article  CAS  Google Scholar 

  • Farquhar, G.D., Oleary, M.H., Berry, J.A.: On the Relationship between carbon isotope discrimination and the inter-cellular carbon dioxide concentration in leaves. — Austr. J. Plant Physiol. 9: 121–137, 1982.

    Article  CAS  Google Scholar 

  • Farquhar, G.D., Ehleringer, J.R., Hubick, K.T.: Carbon isotope discrimination and photosynthesis. — Annu. Rev. Plant Physiol. 40: 503–537, 1989.

    Article  CAS  Google Scholar 

  • GLOBALVIEW-CO2.: Cooperative Atmospheric Data Integration Project — Carbon Dioxide. — CD-ROM, NOAA ESRL. Boulder, Colorado (Colorado [Also available on Internet via anonymous FTP to ftp.cmdl.noaa.gov, Path: ccg/co2/GLOBALVIEW]), 2007.

  • GLOBALVIEW-CO2C13.: Cooperative Atmospheric Data Integration Project - 13C of Carbon Dioxide. — CD-ROM, NOAA ESRL. Boulder, Colorado ([Also available on Internet via anonymous FTP to ftp.cmdl.noaa.gov, Path: ccg/co2c13/GLOBALVIEW]), 2007.

  • Harnos, N., Tuba, Z., Szente, K.: Modelling net photosynthetic rate of winter wheat in elevated air CO2 concentracions. — Photosynthetica. 40: 293–300, 2002.

    Article  CAS  Google Scholar 

  • Haszpra, L., Barcza, Z., Bakwin, P.S., Berger, B.W., Davis, K.J., Weidinger, T.: Measuring system for the long-term monitoring of biosphere/atmosphere exchange of carbon dioxide. — JGR-Atmospheres 106: 3057–3069, 2001.

    Article  CAS  Google Scholar 

  • Haszpra, L., Barcza, Z., Davis, K.J., Tarczay, K.: Long-term tall tower carbon dioxide flux monitoring over an area of mixed vegetation. — Agri. Forest Meteorol. 132: 58–77, 2005.

    Article  Google Scholar 

  • Hemming, D., Yakir, D., Ambus, P., Aurela, M., Besson, C., Black, K., Buchmann, N., Burlett, R., Cescatti, A., Clement, R., Gross, P., Granier, A., Grunwald, T., Havrankova, K., Janous, D., Janssens, I.A., Knohl, A., Ostner, B.K., Kowalski, A., Laurila, T., Mata, C., Marcolla, B., Matteucci, G., Moncrieff, J., Moors, E.J., Osborne, B., Pereira, J.S., Pihlatie, M., Pilegaard, K., Ponti, F., Rosova, Z., Rossi, F., Scartazza, A., Vesala, T.: Pan-European delta C-13 values of air and organic matter from forest ecosystems. — Global Change Biol. 11: 1065–1093, 2005.

    Article  Google Scholar 

  • Jones, H.G.: Plants and microclimates. — In: Jones, H.G. (ed.):: Plants and Microclimates. Pp.192–200. Cambridge Univ. Press, Cambridge 1992.

    Google Scholar 

  • Lai, C.T., Ehleringer, J.R., Tans, P., Wofsy, S.C., Urbanski, S.P., Hollinger, D.Y.: Estimating photosynthetic C-13 discrimination in terrestrial CO2 exchange from canopy to regional scales. — Global Biogeochem. Cycles. 18: GB1041, 2004.

    Article  CAS  Google Scholar 

  • Meijer, H.A.J., Smid, H.M., Perez, E., Keizer, M.G.: Isotopic Characterisation of Anthropogenic CO2 Emissions Using Isotopic and Radiocarbon Analysis. — Phys. Chem. Earth 21: 483–487, 1996.

    Article  Google Scholar 

  • Mosegaard, K., Tarantola, A.: Monte Carlo sampling of solutions to inverse problems. — JGR-Solid Earth 100: 12431–12447, 1995.

    Article  Google Scholar 

  • Olivier, J.G.J., Berdowski, J.J.M.: Global emissions sources and sinks. — In: Berdowski, J., Guicherit, R., Heij, B.J. (ed.): Climate System. Pp. 33–78. A.A. Balkema Publishers/Swets & Zeitlinger Publishers, Lisse 2001.

    Google Scholar 

  • Pieterse, G., Vermeulen, A.T., Baker, I.T., Denning, A.S.: Lagrangian transport modelling for CO2 using two different biosphere models. — Atmos. Chem. Phys. Discuss 8: 4117–4154, 2008.

    Article  Google Scholar 

  • Schulze, E.D.: Biological control of the terrestrial carbon sink. — Biogeosciences. 3: 147–166, 2006.

    Article  CAS  Google Scholar 

  • Stull, R.B. (ed.): An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Dordrecht 1988.

    Google Scholar 

  • Suits, N.S., Denning, A.S., Berry, J.A., Still, C.J., Kaduk, J., Miller, J.B., Baker, I.T.: Simulation of carbon isotope discrimination of the terrestrial biosphere. — Global Biogeochem. Cycles 19: GB1017, 2005.

    Article  CAS  Google Scholar 

  • Van Oijen, M., Rougier, J., Smith, R.: Bayesian calibration of process-based forest models: bridging the gap between models and data. — Tree Physiology 25: 915–927, 2005.

    PubMed  Google Scholar 

  • Vermeulen, A.T., Pieterse, G., Hensen, A., van den Bulk, W.C.M., Erisman, J.W.: COMET: a Lagrangian transport model for greenhouse gas emission estimation — forward model technique and performance for methane. — Atmos. Chem. Phys. Discuss. 6: 8727–8779, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Nagy.

Additional information

Acknowledgements: The authors thank James White, Bruce Vaughn (INSTAAR) and Pieter Tans (NOAA ESRL) for δ13Cair data. Carbon dioxide mixing ratio and meteorological measurements at Hegyhátsál were supported by the Hungarian Scientific Research Fund (OTKA T042941, K75638 and OTKA CK77550), as well as by the 5th and 6th R+D Framework Programme of the European Commission (AEROCARB - EVK2-CT-1999-00013, CarboEurope-IP - GOCE-CT-2003-505572). The authors also highly appreciate the help of Frédéric Chevallier (Laboratoire des Sciences du Climat et de l’Environnement/IPSL, CEA-CNRS-UVSQ, Gif-sur-Yvette, France).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hidy, D., Haszpra, L., Barcza, Z. et al. Modelling of carbon isotope discrimination by vegetation. Photosynthetica 47, 457–470 (2009). https://doi.org/10.1007/s11099-009-0070-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-009-0070-z

Additional key words

Navigation