Skip to main content
Log in

Blue radiation stimulates photosynthetic induction in Fagus sylvatica L.

  • Published:
Photosynthetica

Abstract

This study was designed to test the hypothesis that the spectral composition of incident radiation, as defined by the relative proportions of blue (B; λmax = 455 nm) and red (R; λmax = 625 nm) photons, can affect photosynthetic induction, since B photons stimulate stomatal opening and are more effectively absorbed by leaves than R photons. Different stages of photosynthetic induction, primarily determined by the photo-modulation of Rubisco activity and stomata opening, were investigated in dark-adapted leaves of Fagus sylvatica transferred to saturating irradiance [800µmol(photon) m−2 s−1] at B/R ratios of 1/3, 1/1, or 3/1.

In agreement with our hypothesis, photosynthesis was induced faster by irradiance with a high B/R ratio (3/1); as demontrated by a higher IS60 (induction state 60 s after leaf illumination) and lower T 90 (the time period required to reach 90 % of maximum steady-state photosynthesis). However, there were no differences in induction between leaves receiving equal (1/1) and low (1/3) B/R ratios. Electron transport was highly sensitive to radiation quality, exhibiting faster induction kinetics with increasing B/R ratio. Such stimulation of carbon-assimilatory processes corresponds with faster activation of Rubisco and lower non-photochemical quenching (NPQ) as the proportion of B photons is increased. In contrast, the kinetics of stomatal opening was independent of the spectral composition of incoming radiation. Since slightly higher absorption efficiency of high B/R radiation does not fully explain the changes in induction kinetics, the other possible mechanisms contributing to the stimulation of electron transport and Rubisco activity are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ab (Rf, Tr):

absorptance (reflectance, transmittance)

B (R, FR):

blue (red, far-red) radiation

C i :

intercellular CO2 concentration

Chl (Car):

chlorophyll (carotenoid)

Chl-F:

chlorophyll fluorescence

ETR:

electron transport rate

g s :

stomatal conductance to water vapor

H (E, L):

high (equal, low) proportion of blue to red radiation

IS60 :

induction state 60 s after leaf illumination

LSmax :

maximum value of transient stomatal limitation

NPQ:

non-photochemical quenching

P N (P N*):

CO2 assimilation rate (*without stomatal limitation)

PFD:

photon flux density

R D :

dark respiration rate

T 90 :

time required to reach 90 % of maximum steady-state

T S0 (T B0):

time required to remove transient biochemical (stomatal) limitations

V Cmax :

maximum carboxylation rate

τ:

time constant for Rubisco activation

References

  • Allen, M.T., Pearcy, R.W.: Stomatal behaviour and photosynthetic performance under dynamic light regimes in a seasonally dry tropical rain forest. — Oecologia 122: 470–478, 2000.

    Article  Google Scholar 

  • Baker, N.R., Harbinson, J., Kramer, D.M.: Determining the limitations and regulation of photosynthetic energy transduction in leaves. — Plant Cell Environ. 30: 1107–1125, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Barber, J., Ford, R.C., Mitchell, R.A.C., Millner, P.A.: Chloroplast thylakoid membrane fluidity and its sensitivity to temperature. — Planta 161: 375–380, 1984.

    Article  CAS  Google Scholar 

  • Bilger, W., Schreiber, U., Bock, M.: Determination of the quantum efficiency of photosystem II and of non-photochemical quenching of chlorophyll fluorescence in the field. — Oecologia 102: 425–432, 1995.

    Article  Google Scholar 

  • Briggs, W.R., Christie, J.M.: Phototropins 1 and 2: versatile plant blue-light receptors. — Trends Plant Sci. 7: 204–210, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Campbell, G.S., Norman, J.M.: An Introduction to Environmental Biophysics. — Springer, Berlin 1998.

    Google Scholar 

  • Clark, J.B., Lister, G.R.: Photosynthetic action spectra of trees: I. Comparative photosynthetic action spectra of one deciduous and 4 coniferous tree species as related to photorespiration and pigment complements. — Plant Physiol. 55: 401–406, 1975.

    Article  CAS  PubMed  Google Scholar 

  • Combes, D., Sinoquet, H., Varlet-Grancher, C.: Preliminary measurement and simulation of the spatial distribution of the Morphogenetically Active Radiation (MAR) within an isolated tree canopy. — Ann. Forest Sci. 57: 497–511, 2000.

    Article  Google Scholar 

  • Cseh, Z., Rajagopal, S., Tsonev, T., Busheva, M., Papp, E., Garab, G.: Thermooptic effect in chloroplast thylakoid membranes. Thermal and light stability of pigment arrays with different levels of structural complexity. — Biochemistry 39: 15250–15257, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Cui, M., Vogelmann, T.C., Smith, W.K.: Chlorophyll and light gradients in sun and shade leaves of Spinacia oleracea. — Plant Cell Environ. 14: 493–500, 1991.

    Article  Google Scholar 

  • Dobrikova, A.G., Varkonyi, Z., Krumova, S.B., Kovacs, L., Kostov, G.K., Todinova, S.J., Busheva, M.C., Taneva, S.G., Garab, G.: Structural rearrangements in chloroplast thylakoid membranes revealed by differential scanning calorimetry and circular dichroism spectroscopy. Thermo-optic effect. — Biochemistry 42: 11272–11280, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Fan, D.-Y., Nie, Q., Hope, A.B., Hillier, W., Pogson, B.J., Chow, W.S.: Quantification of cyclic electron flow around Photosystem I in spinach leaves during photosynthetic induction. — Photosynth. Res. 94: 347–357, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Farquhar, G.D., von Caemmerer, S., Berry, J.A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 plants. — Planta 149: 78–90, 1980.

    Article  CAS  Google Scholar 

  • Foyer, C., Furbank, R., Harbinson, J., Horton, P.: The mechanisms contributing to photosynthetic control of electron-transport by carbon assimilation in leaves. — Photosynth. Res. 25: 83–100, 1990.

    Article  CAS  Google Scholar 

  • Frankland, B.: Perception of light quantity. — In: Kendrick, R.E., Kronenberg, G.H.M. (ed.): Photomorphogenesis in Plants. Pp. 219–306, Dr. W. Junk Publishers, Dordrecht 1986.

    Google Scholar 

  • Genty, B., Briantais, J.-M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. — Biochim. Biophys. Acta 990: 87–92, 1989.

    CAS  Google Scholar 

  • Grant, R.H.: Partitioning of biologically active radiation in plant canopies. — Int. J. Biometeorol. 40: 26–40, 1997.

    Article  Google Scholar 

  • Hammond, E.T., Andrews, T.J., Mott, K.A., Woodrow, I.E.: Regulation of Rubisco activation in antisense plants of tobacco containing reduced levels of Rubisco activase. — Plant J. 14: 101–110, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Harley, P.C., Thomas, R.B., Reynolds, J.F., Strain, B.R.: Modeling photosynthesis of cotton grown in elevated CO2. — Plant Cell Environ. 15: 271–282, 1992.

    Article  CAS  Google Scholar 

  • Igamberdiev, A.U., Bykova, N.V., Lea, P.J., Gardeström, P.: The role of photorespiration in redox and energy balance of photosynthetic plant cells: A study with a barley mutant deficient in glycine decarboxylase. — Physiol. Plant. 111: 427–438, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Johnsson, M., Issaias, S., Brogardh, T., Johnsson, A.: Rapid, blue-light-induced transpiration response restricted to plants with grass-like stomata. — Physiol. Plant. 36: 229–232, 1976.

    Article  Google Scholar 

  • Kana, T.M., Miller, J.H.: Effect of colored light on stomatal opening rates of Vicia faba L. — Plant Physiol. 59: 181–183, 1977.

    Article  PubMed  Google Scholar 

  • Kinoshita, T., Doi, M., Suetsugu, N., Kagawa, T., Wada, M., Shimazaki, K.-I.: Phot1 and phot2 mediate blue light regulation of stomatal opening. — Nature 414: 656–660, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Matsuda, R., Ohashi-Kaneko, K., Fujiwara, K., Goto, E., Kurata, K.: Photosynthetic characteristics of rice leaves grown under red light with or without supplemental blue light. — Plant Cell Physiol. 45: 1870–1874, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Maxwell, K., Borland, A.M., Haslam, R.P., Helliker, B.R., Roberts, A., Griffiths, H.: Modulation of Rubisco activity during the diurnal phases of the Crassulacean Acid Metabolism plant Kalanchoë daigremontiana. — Plant Physiol. 121: 849–856, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Melis, A., Spangfort, M., Andersson, B.: Light-absorption and electron-transport balance between Photosystem-II and Photosystem-I in spinach-chloroplasts. — Photochem. Photobiol. 45: 129–136, 1987.

    Article  CAS  Google Scholar 

  • Montgomery, R.A., Givnish, T.J.: Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: dynamic photosynthetic responses. — Oecologia 155: 455–467, 2008.

    Article  PubMed  Google Scholar 

  • Murchie, E.H., Horton, P.: Acclimation of photosynthesis to irradiance and spectral quality in British plant species: Chlorophyll content, photosynthetic capacity and habitat preference. — Plant Cell Environ. 20: 438–448, 1997.

    Article  Google Scholar 

  • Naumburg, E., Ellsworth, D.S.: Photosynthetic sunfleck utilization potential of understory saplings growing under elevated CO2 in FACE. — Oecologia 122: 163–174, 2000.

    Article  Google Scholar 

  • Navrátil, M., Špunda, V., Marková, I., Janouš, D.: Spectral composition of photosynthetically active radiation penetrating into a Norway spruce canopy: the opposite dynamics of the blue/red spectral ratio during clear and overcast days. — Trees-Struct. Funct. 21: 311–320, 2007.

    Google Scholar 

  • Nobel, P.S.: Physicochemical and Environmental Plant Physiology. — Academic Press, Amsterdam — Boston — Heidelberg — London — New York — Oxford — Paris — San Diego — San Francisco — Singapore — Sydney — Tokyo 2005.

    Google Scholar 

  • Pearcy, R.W.: Sunflecks and photosynthesis in plant canopies. — Ann. Rev. Plant Physiol. 41: 421–453, 1990.

    Article  CAS  Google Scholar 

  • Pearcy, R.W., Chazdon, R.L., Gross, L.J., Mott, K.A.: Photosynthetic utilization of sunflecks: A temporally patchy resource on a time scale of seconds to minutes. — In: Caldwell, M.M., Pearcy, R.W. (ed.): Exploitation of Environmental Heterogeneity by Plants: Ecophysiological Processes Aboveand Belowground. Pp. 175–208. Academic Press, San Diego — New York — Boston — London — Sydney — Tokyo — Toronto 1994.

    Google Scholar 

  • Portis, A.R., Li, C.S., Wang, D.F., Salvucci, M.E.: Regulation of Rubisco activase and its interaction with Rubisco. — J. Exp. Bot. 59: 1597–1604, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Sassenrath-Cole, G.F., Pearcy, R.W.: The role of ribulose-1,5-bisphosphate regeneration in the induction requirement of photosynthetic CO2 exchange under transient light conditions. — Plant Physiol. 99: 227–234, 1992.

    Article  CAS  PubMed  Google Scholar 

  • Schulte, M., Offer, C., Hansen, U.: Induction of CO2-gas exchange and electron transport: comparison of dynamic and steady-state responses in Fagus sylvatica leaves. — Trees-Struct. Funct. 17: 153–163, 2003.

    CAS  Google Scholar 

  • Sharkey, T.D., Raschke, K.: Effect of light quality on stomatal opening in leaves of Xanthinum strumarium L. — Plant Physiol. 68: 1170–1174, 1981.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, B.: Specific effects of blue light on plant growth and development. — In: Smith, H. (ed.): Plants and the Daylight Spectrum. Pp. 444–459. Academic Press, London — New York — Toronto — Sydney — San Francisco 1981.

    Google Scholar 

  • Tinoco-Ojanguren, C., Pearcy, R.W.: A comparison of light quality and quantity effects on the growth and steady-state and dynamic photosynthetic characteristics of 3 tropical tree species. — Funct. Ecol. 9: 222–230, 1995.

    Article  Google Scholar 

  • Urban, O., Janouš, D., Acosta, M., Czerný, R., Marková, I., Navrátil, M., Pavelka, M., Pokorný, R., Šprtová, M., Zhang, R., Špunda, V., Grace, J., Marek, M.V.: Ecophysiological controls over the net ecosystem exchange of mountain spruce stand. Comparison of the response in direct vs. diffuse solar radiation. — Global Change Biol. 13: 157–168, 2007a.

    Article  Google Scholar 

  • Urban, O., Košvancová, M., Marek, M.V., Lichtenthaler, H.K.: Induction of photosynthesis and importance of limitations during the induction phase in sun and shade leaves of five ecologically contrasting tree species from the temperate zone. — Tree Physiol. 27: 1207–1215, 2007b.

    PubMed  Google Scholar 

  • Urban, O., Šprtová, M., Košvancová, M., Tomá<ková, I., Lichtenthaler, H.K., Marek, M.V.: Comparison of photosynthetic induction and transient limitations during the induction phase in young and mature leaves from three poplar clones. — Tree Physiol. 28: 1189–1197, 2008.

    CAS  PubMed  Google Scholar 

  • Valladares, F., Allen, M.T., Pearcy, R.W.: Photosynthetic responses to dynamic light under field conditions in six tropical rainforest shrubs occurring along a light gradient. — Oecologia 111: 505–514, 1997.

    Article  Google Scholar 

  • Vogelmann, T.C., Evans, J.R.: Profiles of light absorption and chlorophyll within spinach leaves from chlorophyll fluorescence. — Plant Cell Environ. 25: 1313–1323, 2002.

    Article  Google Scholar 

  • Woodrow, I.E., Mott, K.A.: Rate limitation of non-steady-state photosynthesis by ribulose-1,5-bisphosphate carboxylase in spinach. — Aust. J. Plant Physiol. 16: 487–500, 1989.

    Google Scholar 

  • Yamori, W., Noguchi, K., Kashino, Y., Terashima, I.: The role of electron transport in determining the temperature dependence of the photosynthetic rate in spinach leaves grown at contrasting temperatures. — Plant Cell Physiol. 49: 583–591, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Zeiger, E.: The photobiology of stomatal movements. — In: Kendrick, R.E., Kronenberg, G.H.M. (ed.): Photomorphogenesis in Plants. Pp. 391–404. Martinus Nijhoff Publ., Dordrecht — Boston — Lancaster 1986.

    Google Scholar 

  • Zeiger, E., Field, C.: Photocontrol of the functional coupling between photosynthesis and stomatal conductance in the intact leaf: Blue light and Par-dependent photosystems in guard cells. — Plant Physiol. 70: 370–375, 1982.

    Article  PubMed  Google Scholar 

  • Zeiger, E., Field, C., Mooney, H.A.: Stomatal opening at dawn: Possible roles of the blue light in nature. — In: Smith, H. (ed.): Plants and the Daylight Spectrum. Pp. 391–407. Academic Press, London — New York — Toronto — Sydney — San Francisco 1981.

    Google Scholar 

  • Zipperlen, S.W., Press, M.C.: Photosynthetic induction and stomatal oscillations in relation to the light environment of two dipterocarp rain forest tree species. — J. Ecol. 85: 491–503, 1997.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Urban.

Additional information

Acknowledgements: This work is part of the research supported by grants IAA600870701 (GA AV), OC08022 (MSMT), 522/07/0759 (GA CR) and by the Research Intention of ISBE AS CR AV0Z60870520. M. Navrátil and V. Špunda are supported by the Ostrava University (Foundation for the Support of R&D Centres), and T.M. Robson is supported by the Spanish Ministry of Education and Science project CLIMHAYA-BOSALIM (CGL2007-66066-C04-03/BOS) and a Juan de la Cierva Fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Košvancová-Zitová, M., Urban, O., Navrátil, M. et al. Blue radiation stimulates photosynthetic induction in Fagus sylvatica L.. Photosynthetica 47, 388–398 (2009). https://doi.org/10.1007/s11099-009-0060-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-009-0060-1

Additional keywords

Navigation