Photosynthetic performance of vegetative and reproductive structures of green hellebore (Helleborus viridis L. agg.)

Abstract

Photosynthetic irradiance response of vegetative and reproductive structures of the green-flowered deciduous perennial green hellebore was studied by the comparative use of chlorophyll (Chl) fluorescence techniques and gas exchange measurements. All the Chl-containing organs (leaves, sepals, stalks, and fruits) examined were photosynthetically active showing high intrinsic efficiencies of photosystem 2 (Fv/Fm: 0.75–0.79) after dark adaptation. Even in the smaller fertile and sterile parts of the flower (nectaries and anthers) a remarkable photosynthetic competence was detected. With increasing photon flux densities (PFD) electron transport rates, actual quantum yields, and photochemical quenching coefficients of the main photosynthetic organs decreased in the order: leaf>sepal>fruit>stalk. At moderate to high PFDs the sepals achieved maximum electron transport rates corresponding to about 80 % of concomitant mature leaves. In contrast, maximum net photosynthetic rate of the sepals [2.3 μmol(CO2) m−2 s−1] were less than one fourth of the leaves [10.6 μmol(CO2) m−2 s−1]. This difference is explained by a 70–80 % lower stomatal density of sepals in comparison to leaves. As the basal leaves emerge late during fruit development, the photosynthetically active sepals are a major source of assimilates, contributing more than 60 % of whole-plant CO2 gain in early spring. The ripening dehiscent fruits are characterized by an effective internal re-fixation of the respirational carbon loss and thus additionally improve the overall carbon budget.

This is a preview of subscription content, log in to check access.

References

  1. Antlfinger, A.E., Wendel, L.F.: Reproductive effort and floral photosynthesis in Spiranthes cernua (Orchidaceae). — Amer. J. Bot. 84: 769–780, 1997.

    Google Scholar 

  2. Aschan, G., Lösch, R.: Das Bestandesklima niederbergischer Buchenwälder. — Jahresber. naturwiss. Verein. Wuppertal 53: 89–111, 2000.

    Google Scholar 

  3. Aschan, G, Pfanz, H.: Non-foliar photosynthesis — a strategy of additional carbon acquisition. — Flora 198: 81–97, 2003a.

    Google Scholar 

  4. Aschan, G., Pfanz, H.: Non-foliar photosynthesis and its contribution to the overall carbon balance of plants. — Acta biol. sloven. 46(2): 3–10, 2003b.

    Google Scholar 

  5. Bazzaz, F.A., Carlson, R.W.: Photosynthetic contribution of flowers and seeds to reproductive effort of an annual colonizer. — New Phytol. 82: 223–232, 1979.

    Google Scholar 

  6. Bazzaz, F.A., Carlson, R.W., Harper, J.L.: Contribution to reproductive effort by photosynthesis of flowers and fruits. — Nature 279: 554–555, 1979.

    Google Scholar 

  7. Blanke, M.M., Lenz, F.: Fruit photosynthesis. — Plant Cell Environ. 12: 31–46, 1989.

    Google Scholar 

  8. Björkman, O., Demmig, B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. — Planta 170: 489–504, 1987.

    Google Scholar 

  9. Clement, C., Mischler, P., Burrus, M., Audran, J.C.: Characteristics of the photosynthetic apparatus and CO2-fixation in the flower bud of Lilium. I. Corolla. — Int. J. Plant Sci. 158: 794–800, 1997a.

    Google Scholar 

  10. Clement, C., Mischler, P., Burrus, M., Audran, J.C.: Characteristics of the photosynthetic apparatus and CO2-fixation in the flower bud of Lilium. II. Anther. — Int. J. Plant Sci. 158: 801–810, 1997b.

    Google Scholar 

  11. Dueker, J., Arditti, J.: Photosynthetic 14CO2 fixation by green Cymbidium (Orchidaceae) flowers. — Plant Physiol. 43: 130–132, 1968.

    Google Scholar 

  12. Galen, C., Dawson, T.E., Stanton, M.L.: Carpels as leaves: meeting the carbon cost of reproduction in an alpine buttercup. — Oecologia 95: 187–193, 1993.

    Google Scholar 

  13. Genty, B.E., Briantais, J.-M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. — Biochim. biophys. Acta 990: 87–92, 1989.

    Google Scholar 

  14. Goh, C.J.: Rhythms of acidity and CO2 production in orchid flowers. — New Phytol. 93: 25–32, 1983.

    Google Scholar 

  15. Grönegress P.: The structure of chromoplasts and their conversion to chloroplasts. — J. Microscopie (Paris) 19: 183–192, 1974.

    Google Scholar 

  16. Heilmeier, H., Whale, D.M.: Carbon dioxide assimilation in the flowerhead of Arctium. — Oecologia 73: 109–115, 1987.

    Google Scholar 

  17. Hetherington, S.E.: Profiling photosynthetic competence in mango fruit. — J. hortic. Sci. 72: 755–763, 1997.

    Google Scholar 

  18. Hetherington, S.E., Smillie, R.M., Davies, W.J.: Photosynthetic activities of vegetative and fruiting tissues of tomato. — J. exp. Bot. 49: 1173–1181, 1998.

    Google Scholar 

  19. Hew, C.S., Lee, G.L., Wong, S.C.: Occurrence of non-functional stomata in the flowers of tropical orchids. — Ann. Bot. 46: 195–201, 1980.

    Google Scholar 

  20. Keijzer, C.J., Willemse, M.T.M.: Tissue interactions in the developing locule of Gasteria verrucosa during microsporogenesis. — Acta bot. neerl. 37: 475–492, 1988.

    Google Scholar 

  21. Khoo, G.H., He, J., Hew, C.S.: Photosynthetic utilization of radiant energy by CAM Dendrobium flowers. — Photosynthetica 34: 367–376, 1997.

    Google Scholar 

  22. Kirichenko, E.B., Chernyad'ev, I.I., Voronkova, T.V., Sokolova, R.S., Doman, N.G.: [Activity of the photosynthesis apparatus in orchids during flowering.] — Fiziol. Rast. 36: 710–716, 1989. [In Russ.]

    Google Scholar 

  23. Kirichenko, E.B., Krendeleva, T.E., Kukarskikh, G.P., Nizovskaia, N.V.: [Photochemical activity in chloroplasts of anthers and caryopsis pericarp in cereals.] — Fiziol. Rast. 40: 250–254, 1993. [In Russ.]

    Google Scholar 

  24. Larcher, W.: Ökophysiologie der Pflanzen. 6th Ed. — Ulmer, Stuttgart 2001.

    Google Scholar 

  25. Luthra, Y.P., Sheoran, I.S., Singh, R.: Photosynthetic rates and enzyme activities of leaves, developing seeds and pod-wall of pigeon pea (Cajanus cajan L.). — Photosynthetica 17: 210–215, 1983.

    Google Scholar 

  26. Marcelis, L.F.M., Hofman-Eijer, L.R.B.: The contribution of fruit photosynthesis to the carbon requirement of carbon requirement of cucumber fruits as affected by irradiance, temperature and ontogeny. — Physiol. Plant. 93: 476–483, 1995.

    Google Scholar 

  27. Mathew, B.: Hellebores. — Alpine Garden Society, W.S. Cowell, Ipswich 1989.

    Google Scholar 

  28. Moreshet, S., Green, G.C.: Photosynthesis and diffusion conductance of the Valencia orange fruit under field conditions. — J. exp. Bot. 31: 15–27, 1980.

    Google Scholar 

  29. Obeso, J.R.: The costs of reproduction in plants. — New Phytol. 155: 321–348, 2002.

    Google Scholar 

  30. Salopek-Sondi, B., Kovac, M., Ljubesic, N., Magnus, V.: Fruit initiation in Helleborus niger L. triggers chloroplast formation and photosynthesis in the perianth. — J. Plant Physiol. 157: 357–364, 2000.

    Google Scholar 

  31. Salopek-Sondi, B., Kovac, M., Ljubesic, N., Magnus, V.: Developing fruit direct post-floral morphogenesis in Helleborus niger L. — J. exp. Bot. 53: 1949–1957, 2002.

    Google Scholar 

  32. Schreiber, U., Bilger, W., Neubauer, C.: Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. — In: Schulze, E.-D.; Caldwell, M.M. (ed.): Ecophysiology of Photosynthesis. Pp. 49–70. Springer-Verlag, Berlin — Heidelberg — New York 1994.

    Google Scholar 

  33. Smillie, R.M.: Calvin cycle activity in fruit and the effect of heat stress. — Sci. Hortic. 51: 83–95, 1992.

    Google Scholar 

  34. Vainstein, A., Sharon, R.: Biogenesis of petunia and carnation corolla chloroplasts: changes in the abundance of nuclear and plastid-encoded photosynthesis-specific gene products during flower development. — Physiol. Plant. 89: 192–198, 1993.

    Google Scholar 

  35. Vemmos, S.N., Goldwin, G.K.: Stomatal and chlorophyll distribution of Cox's Orange Pippin apple flowers relative to other cluster parts. — Ann. Bot. 71: 245–250, 1993.

    Google Scholar 

  36. Vemmos, S.N., Goldwin, G.K.: The photosynthetic activity of Cox's orange pippin apple flowers in relation to fruit setting. — Ann. Bot. 73: 385–391, 1994.

    Google Scholar 

  37. Watson, M.A., Caspar, B.B.: Morphogenetic constraints on patterns of carbon distribution in plants. — Annu. Rev. Ecol. Syst. 15: 233–258, 1984.

    Google Scholar 

  38. Weiss, D., Schönfeld, M., Halevy, A.H.: Photosynthetic activities in the Petunia corolla. — Plant Physiol. 87: 666–670, 1988.

    Google Scholar 

  39. Wellburn, A.R.: The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. — J. Plant Physiol. 144: 307–313, 1994.

    Google Scholar 

  40. Werner, K., Ebel, F.: Zur Lebensgeschichte der Gattung Helleborus L. (Ranunculaceae). — Flora 189: 97–130, 1994.

    Google Scholar 

  41. Werk, K.S., Ehleringer, J.R.: Photosynthesis by flowers in Encelia farinosa and Encelia californica (Asteraceae). — Oecologia 57: 311–315, 1983.

    Google Scholar 

  42. Williams, K., Koch, G.W., Mooney, H.A.: The carbon balance of flowers of Diplacus aurantiacus (Scrophulariaceae). — Oecologia 66: 530–535, 1985.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aschan, G., Pfanz, H., Vodnik, D. et al. Photosynthetic performance of vegetative and reproductive structures of green hellebore (Helleborus viridis L. agg.). Photosynthetica 43, 55–64 (2005). https://doi.org/10.1007/s11099-005-5064-x

Download citation

Additional key words

  • carbon budget
  • chlorophyll fluorescence
  • CO2 re-fixation
  • floral photosynthesis
  • nectaries
  • sepals