Skip to main content
Log in

Monitoring leaf photosynthesis with canopy spectral reflectance in rice

  • Published:
Photosynthetica

Abstract

Non-destructive and rapid method for assessment of leaf photosynthetic characteristics is needed to support photosynthesis modelling and growth monitoring in crop plants. We determined the quantitative relationships between leaf photosynthetic characteristics and canopy spectral reflectance under different water supply and nitrogen application rates. The responses of reflectance at red radiation (wavelength 680 nm) to different water contents and nitrogen rates were parallel to those of leaf net photosynthetic rate (P N). The relationships of reflectance at 680 nm and ratio index of R(810,680) (near infrared/red, NIR/R) to P N of different leaf positions and leaf layers in rice indicated that the top two full leaves were the best leaf positions for quantitative monitoring of leaf P N with remote sensing technique, and the ratio index R(810,680) was the best ratio index for evaluating leaf photosynthetic characteristics in rice. Testing of the models with independent data sets indicated that R(810,680) could well estimate P N of top two leaves and canopy leaf photosynthetic potential in rice, with the root mean square error of 0.25, 0.16, and 4.38, respectively. Hence R(810,680) can be used to monitor leaf photosynthetic characteristics at different growth stages of rice under diverse growing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CSI:

canopy structure index

FWC:

field water capacity

L:

green leaf area index

LWC:

leaf water content

Nc :

canopy nitrogen concentrations

PAR:

photosynthetically active radiation

P N :

net photosynthetic rate

R(λ1, λ2):

ratio index

SR:

simple ratio vegetation index

References

  • Al-Abbas, A.H., Barr, R., Hall, J.D., Crane, F.L., Baumgardner, M.F.: Spectra of normal and nutrient-deficient maize leaves. — Agron. J. 66: 16–20, 1974.

    Google Scholar 

  • Aldakheel, Y.Y., Danson, F.M.: Spectral reflectance of dehydrating leaves: measurements and modeling. — Int. J. remote Sens. 18: 3683–3690, 1997.

    Article  Google Scholar 

  • Aoki, M., Totsuka, T.: [An evaluation of chlorophyll content and leaf area index of canopies based on spectral reflection characteristics.] — Res. Rep. nat. Inst. environ. Stud. 82: 137–147, 1985. [In Jap.]

    Google Scholar 

  • Boegh, E., Soegaard, H., Broge, N., Hasager, C.B., Jensen, N.O., Schelde, K., Thomsen, A.: Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. — Remote Sens. Environ. 81: 179–193, 2002.

    Article  Google Scholar 

  • Carter, G.A.: Reflectance wavebands and indices for remote estimation of photosynthesis and stomatal conductance in pine canopies. — Remote Sens. Environ. 63: 61–72, 1998.

    Article  Google Scholar 

  • Choudhury, B.J.: Estimating gross photosynthesis using satellite and ancillary data: Approach and preliminary results. — Remote Sens. Environ. 75: 1–21, 2001.

    Article  Google Scholar 

  • CROPSCAN: Data Logger Controller, User's Guide and Technical Reference. — CROPSCAN, Rochester 2000.

    Google Scholar 

  • Curcio, J.A., Petty, C.C.: The near infrared absorption spectrum of liquid water. — J. opt. Soc. Amer. 41: 302–304, 1951.

    Google Scholar 

  • Daughtry, C.S.T., Walthall, C.L., Kim, M.S., Colstoun, E.B., McMurtrey, J.E.: III. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. — Remote Sens. Environ. 74: 229–239, 2000.

    Article  Google Scholar 

  • Dusek, D.A., Jackson, R.D., Musick, J.T.: Winter wheat vegetation indices calculated from combinations of seven spectral bands. — Remote Sens. Environ. 17: 27–36, 1985.

    Article  Google Scholar 

  • Filella, I., Penuelas, J.: The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. — Int. J. remote Sens. 15: 1459–1470, 1994.

    Google Scholar 

  • Gausman, H.W., Allen, W.A., Cardenas, R.: Relation of light reflectance to histological and physical evaluations of cotton leaf maturity. — Appl. Optics 9: 545–552, 1970.

    Google Scholar 

  • Gupta, R.K., Vijayan, D., Prasad, T.S.: Characterization of red-near infrared transition for wheat and chickpea using 3nm bandwidth data. — Adv. Space Res. 28: 189–194, 2001.

    Article  Google Scholar 

  • Hatfield, J.L., Kanemasu, E.T., Asrar, G.: Leaf-area estimates from spectral measurements over various planting dates of wheat. — Int. J. remote Sens. 6: 167–175, 1985.

    Google Scholar 

  • Horler, D.N.H., Dockray, M., Barber, J.: The red edge of plant leaf reflectance. — Int. J. remote Sens. 4: 273–288, 1983.

    Google Scholar 

  • Horler, D.N.H., Dockray, M., Barber, J., Barringer, A.R.: Red edge measurements for remotely sensing plant chlorophyll content. — Adv. Space Res. 3: 273–277. 1983.

    Article  Google Scholar 

  • Inada, K.: Spectral ratio of reflectance for estimating chlorophyll content of leaf. — Jap. J. Crop Sci. 54: 261–265, 1985.

    Google Scholar 

  • Jin, Z.H., Zhang, H.M., Wang, J.S.: [Estimating leaf area index from spectral reflectance in wheat.] — Acta Agr. Univ. pekinensis 18: 189–197, 1992. [In Chin.]

    Google Scholar 

  • Liu, W.D., Xiang, Y.Q., Zheng, L.F., Tong, Q.X., Wu, C.S.: [Relationships between rice LAI, leaf chlorophyll density and hyperspectra data.] — J. remote Sens. 4: 279–283, 2000. [In Chin.]

    Google Scholar 

  • SAS Institute: SAS User's Guide: Statistics. Version 6.12. — SAS Inst., Cary 1990.

    Google Scholar 

  • Sellers, P.J.: Canopy reflectance, photosynthesis and transpiration. — Int. J. remote Sens. 6: 1335–1372 1985.

    Google Scholar 

  • Sellers, P.J.: Canopy reflectance, photosynthesis and transpiration. II. The role of biophysics in the linearity of their interdependence. — Remote Sens. Environ. 21: 143–183, 1987.

    Article  Google Scholar 

  • Serrano, L., Filella, I., Penuelas, J.: Remote sensing of biomass and yield of winter wheat under different nitrogen supplies. — Crop Sci. 40: 723–731, 2000.

    Google Scholar 

  • Shibayama, M., Akiyama, T.: A spectroradiometer for field use. VI. Radiometric estimation for chlorophyll index of rice canopy. — Jap. J. Crop Sci. 55: 433–438, 1986.

    Google Scholar 

  • Shibayama, M., Akiyama, T.: Seasonal visible, near-infrared and mid-infrared spectra of rice canopies in relation to LAI and above-ground dry phytomass. — Remote Sens. Environ. 27: 119–127, 1989.

    Article  Google Scholar 

  • Sims, D.A., Gamon, J.A.: Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance: a comparison of indices based on liquid water and chlorophyll absorption features. — Remote Sens. Environ. 5789: 1–12, 2002.

    Google Scholar 

  • Tarpley, L., Reddy, K.R., Sassenrath-Cole, G.F.: Reflectance indices with precision and accuracy in predicting cotton leaf nitrogen concentration. — Crop Sci. 40: 1814–1819, 2000.

    Google Scholar 

  • Thiemann, S., Kaufmann, H.: Determination of chlorophyll content and trophic state of lakes using field spectrometer and IRS-1C satellite data in the Mecklenburg lake district, Germany. — Remote Sens. Environ. 73: 227–235, 2000.

    Article  Google Scholar 

  • Tracy, M.B., James, S.S., Gary, E.V.: Light reflectance compared with other nitrogen stress measurements in corn leaves. — Agron. J. 86: 934–938, 1994.

    Google Scholar 

  • Verma, S.B., Sellers, P.J., Walthall, C.L., Hall, F.G., Kim, J., Goetz, S.J.: Photosynthesis and stomatal conductance related to reflectance on the canopy scale. — Remote Sens. Environ. 44: 103–116, 1993.

    Article  Google Scholar 

  • Yu, Q., Xie, X.Q., Sun, S.F., Wang, T.D., Lu, P.L.: [Advances in simulation of plant photosynthetic productivity and canopy evapotranspiration.] — Acta ecol. sin. 19: 744–753, 1999. [In Chin.]

    Google Scholar 

  • Zhang, J.H., Fu, C.B.: [A study on relationships between remote sensing information and plant photosynthetic parameters in estimating biomass model.] — Acta geodet. cartogr. sin. 28: 128–132, 1999. [In Chin.]

    Google Scholar 

  • Zhang, J.H., Wang, C.Y.: [A study on relationships between remote sensing information and plant photosynthetic parameters in estimating biomass model.] — J. arid Land Resources Environ. 17: 91–95, 2003. [In Chin.]

    Google Scholar 

  • Zhang, J.H., Wang, C.Y., Fu, C.B.: [A study of crop yield estimation model based on remote sensing information and crop photosynthesis.] — J. nat. Resources 15: 170–174, 2000. [In Chin.]

    Google Scholar 

  • Zhang, Q.D., Jiang, G.M., Zhu, X.G., Wang, Q., Lu, C.M., Bai, K.Z., Kuang, T.Y., Wei, Q.K., Li, Z.S.: [Photosynthetic capability of 12 genotypes of Triticum aestivum.] — Acta phytoecol. sin. 26: 532–536, 2001. [In Chin.]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, Y., Zhu, Y. & Cao, W. Monitoring leaf photosynthesis with canopy spectral reflectance in rice. Photosynthetica 43, 481–489 (2005). https://doi.org/10.1007/s11099-005-0078-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-005-0078-y

Additional key words

Navigation