Skip to main content
Log in

An insight into spectral composition of light available for photosynthesis via remotely assessed absorption coefficient at leaf and canopy levels

  • Original article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Non-invasive comparative analysis of the spectral composition of energy absorbed by crop species at leaf and plant levels was carried out using the absorption coefficient retrieved from leaf and plant reflectance as an informative metric. In leaves of three species with contrasting leaf structures and photosynthetic pathways (maize, soybean, and rice), the blue, green, and red fractions of leaf absorption coefficients were 48, 20, and 32%, respectively. The fraction of green light in the total budget of light absorbed at the plant level was higher than at the leaf level approaching the size of the red fraction (24% green vs. 25.5% red) and surpassing it inside the canopy. The plant absorption coefficient in the far-red region (700–750 nm) was significant reaching 7–10% of the absorption coefficient in green or red regions. The spectral composition of the absorbed light in the three species was virtually the same. Fractions of light in absorbed PAR remained almost invariant during growing season over a wide range of plant chlorophyll content. Fractions of absorption coefficient in the green, red, and far-red were in accord with published results of quantum yield for CO2 fixation on an absorbed light basis. The role of green and far-red light in photosynthesis was demonstrated in simple experiments in natural conditions. The results show the potential for using leaf and plant absorption coefficients retrieved from reflectance to quantify photosynthesis in each spectral range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The raw data are available from the authors on reasonable request.

References

  • Allakhverdiev SI (2020) Optimising photosynthesis for environmental fitness. Funct Plant Biol 47(11):iii–vii. https://doi.org/10.1071/FPv47n11_FO

    Article  PubMed  Google Scholar 

  • Ciganda V, Gitelson A, Schepers J (2009) Non-destructive determination of maize leaf and canopy chlorophyll content. J Plant Physiol 166(2):157–167

    Article  CAS  Google Scholar 

  • Cui M, Vogelmann T, Smith W (1991) Chlorophyll and light gradients in sun and shade leaves of Spinacia oleracea. Plant Cell Environ 14(5):493–500

    Article  Google Scholar 

  • Feret J-B, François C, Asner GP, Gitelson AA, Martin RE, Bidel LPR, Ustin SL, le Maire G, Jacquemoud S (2008) PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens Environ 112:3030–3043. https://doi.org/10.1016/j.rse.2008.02.012

    Article  Google Scholar 

  • Féret J-B, Gitelson A, Noble S, Jacquemoud S (2017) PROSPECT-D: towards modeling leaf optical properties through a complete lifecycle. Remote Sens Environ 193:204–215

    Article  Google Scholar 

  • Gates DM (1980) Solar radiation. In: Biophysical ecology. Springer, New York, pp 96–147

    Chapter  Google Scholar 

  • Gitelson AA, Gritz Y, Merzlyak MN (2003) Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J Plant Physiol 160(3):271–282

    Article  CAS  Google Scholar 

  • Gitelson AA, Viña A, Ciganda V, Rundquist DC, Arkebauer TJ (2005) Remote estimation of canopy chlorophyll content in crops. Geophys Res Lett. https://doi.org/10.1029/2005GL022688

    Article  Google Scholar 

  • Gitelson AA, Viña A, Verma SB, Rundquist DC, Arkebauer TJ, Keydan G, Leavitt B, Ciganda V, Burba GG, Suyker AE (2006) Relationship between gross primary production and chlorophyll content in crops: implications for the synoptic monitoring of vegetation productivity. J Geophys Res Atmos. https://doi.org/10.1029/2005JD006017

    Article  Google Scholar 

  • Gitelson AA, Viña A, Masek JG, Verma SB, Suyker AE (2008) Synoptic monitoring of gross primary productivity of maize using Landsat data. IEEE Geosci Remote Sens Lett 5(2):133–137

    Article  Google Scholar 

  • Gitelson AA, Peng Y, Viña A, Arkebauer T, Schepers JS (2016) Efficiency of chlorophyll in gross primary productivity: a proof of concept and application in crops. J Plant Physiol 201:101–110

    Article  CAS  Google Scholar 

  • Gitelson AA, Arkebauer TJ, Suyker AE (2018) Convergence of daily light use efficiency in irrigated and rainfed C3 and C4 crops. Remote Sens Environ 217:30–37

    Article  Google Scholar 

  • Gitelson A, Viña A, Solovchenko A, Arkebauer T, Inoue Y (2019) Derivation of canopy light absorption coefficient from reflectance spectra. Remote Sens Environ 231:111276

    Article  Google Scholar 

  • Gitelson A, Solovchenko A, Viña A (2020) Foliar absorption coefficient derived from reflectance spectra: a gauge of the efficiency of in situ light-capture by different pigment groups. J Plant Physiol 254:153277

    Article  CAS  Google Scholar 

  • Gitelson A, Arkebauer T, Viña A, Skakun S, Inoue Y (2021) Evaluating plant photosynthetic traits via absorption coefficient in the photosynthetically active radiation region. Remote Sens Environ. https://doi.org/10.1016/j.rse.2021.112401

    Article  Google Scholar 

  • Hanan NP, Burba G, Verma SB, Berry JA, Suyker A, Walter-Shea EA (2002) Inversion of net ecosystem CO2 flux measurements for estimation of canopy PAR absorption. Glob Change Biol 8(6):563–574

    Article  Google Scholar 

  • Hogewoning SW, Wientjes E, Douwstra P, Trouwborst G, van Ieperen W, Croce R, Harbinson J (2012) Photosynthetic quantum yield dynamics: from photosystems to leaves. Plant Cell 24(5):1921–1935. https://doi.org/10.1105/tpc.112.097972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inada K (1976) Action spectra for photosynthesis in higher plants. Plant Cell Physiol 17(2):355–365

    Google Scholar 

  • Inoue Y, Guérif M, Baret F, Skidmore A, Gitelson A, Schlerf M, Darvishzadeh R, Olioso A (2016) Simple and robust methods for remote sensing of canopy chlorophyll content: a comparative analysis of hyperspectral data for different types of vegetation. Plant Cell Environ 39(12):2609–2623

    Article  CAS  Google Scholar 

  • Kono M, Kawaguchi H, Mizusawa N, Yamori W, Suzuki Y, Terashima I (2020) Far-red light accelerates photosynthesis in the low-light phases of fluctuating light. Plant Cell Physiol 61(1):192–202. https://doi.org/10.1093/pcp/pcz191

    Article  CAS  PubMed  Google Scholar 

  • Kortum G (1969) Reflectance spectroscopy. In: Principles, methods, applications. Springler-Verlag Inc., New York, NY

    Book  Google Scholar 

  • Kubelka P, Munk F (1931) Ein Beitrag Zur Optik Der Farbanstriche. Z Tech Phys 12:593–601

    Google Scholar 

  • Kume A (2017) Importance of the green color, absorption gradient, and spectral absorption of chloroplasts for the radiative energy balance of leaves. J Plant Res 130(3):501–514

    Article  CAS  Google Scholar 

  • Laisk A, Oja V, Eichelmann H, Dall’Osto L (2014) Action spectra of photosystems II and I and quantum yield of photosynthesis in leaves in State 1. Biochem Biophys Acta 2:315–325

    Google Scholar 

  • Lichtenthaler H (1983) Differences in chlorophyll levels, fluorescence and photosynthetic activity of leaves from high-light and low-light seedlings. In: Photosynthesis and plant productivity: joint meeting of OECD and Studienzentrum Weikersheim, Ettlingen Castle (Germany), October 11–14, 1981/editor: H. Metzner. Wissenschaftliche Verlagsgesellschaft, Stuttgart

  • Marosvölgyi M, van Gorkom H (2002) Cost and color of photosynthesis. Photosynth Res 103(2):105–109

    Article  Google Scholar 

  • McCree KJ (1971) The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric Meteorol 9:191–216

    Article  Google Scholar 

  • Merzlyak MN, Gitelson A (1995) Why and what for the leaves are yellow in autumn? on the interpretation of optical spectra of senescing leaves (acerplatanoides l.). J Plant Physiol 145:315–320

    Article  CAS  Google Scholar 

  • Merzlyak MN, Chivkunova OB, Melo TB, Naqvi KR (2002) Does a leaf absorb radiation in the near infrared (780–900 nm) region? A new approach to quantifying optical reflection, absorption and transmission of leaves. Photosynth Res 72(3):263–270. https://doi.org/10.1023/A:1019823303951

    Article  CAS  PubMed  Google Scholar 

  • Merzlyak MN, Melø T, Naqvi KR (2004) Estimation of leaf transmittance in the near infrared region through reflectance measurements. J Photochem Photobiol B 74(2–3):145–150

    Article  CAS  Google Scholar 

  • Naus J, Lazar D, Barankova B, Arnostova B (2017) On the source of non-linear light absorbance in photosynthetic samples. Photosynth Res. https://doi.org/10.1007/s11120-017-0468-6

    Article  PubMed  Google Scholar 

  • Nishio JN, Sun J, Vogelmann TC (1993) Carbon fixation gradients across spinach leaves do not follow internal light gradients. Plant Cell 5(8):953–961

    Article  CAS  Google Scholar 

  • Oguchi R, Douwstra P, Fujita T, Chow WS, Terashima I (2011) Intra-leaf gradients of photoinhibition induced by different color lights: implications for the dual mechanisms of photoinhibition and for the application of conventional chlorophyll fluorometers. New Phytol 191(1):146–159. https://doi.org/10.1111/j.1469-8137.2011.03669.x

    Article  PubMed  Google Scholar 

  • Oguchi R, Terashima I, Chow WS (2021) The effect of different spectral light quality on the photoinhibition of photosystem I in intact leaves. Photosynth Res. https://doi.org/10.1007/s11120-020-00805-z

  • Paradiso R, Meinen E, Snel JF, De Visser P, Van Ieperen W, Hogewoning SW, Marcelis LF (2011) Spectral dependence of photosynthesis and light absorptance in single leaves and canopy in rose. Sci Hortic 127(4):548–554

    Article  CAS  Google Scholar 

  • Peng Y, Gitelson AA, Keydan G, Rundquist DC, Moses W (2011) Remote estimation of gross primary production in maize and support for a new paradigm based on total crop chlorophyll content. Remote Sens Environ 115(4):978–989

    Article  Google Scholar 

  • Peng Y, Nguy-Robertson A, Arkebauer T, Gitelson AA (2017) Assessment of canopy chlorophyll content retrieval in maize and soybean: implications of hysteresis on the development of generic algorithms. Remote Sens 9(3):226

    Article  Google Scholar 

  • Pettai H, Oja V, Freiberg A, Laisk A (2005) Photosynthetic activity of far-red light in green plants. Biochem Biophys Acta 1708(3):311–321

    CAS  PubMed  Google Scholar 

  • Rundquist D, Perk R, Leavitt B, Keydan G, Gitelson A (2004) Collecting spectral data over cropland vegetation using machine-positioning versus hand-positioning of the sensor. Comput Electron Agric 43(2):173–178

    Article  Google Scholar 

  • Sun J, Nishio J, Vogelmann T (1998) Green light drives CO2 fixation deep within leaves. Plant Cell Physiol 39(10):1020–1026

    Article  CAS  Google Scholar 

  • Terashima I, Saeki T (1985) A new model for leaf photosynthesis incorporating the gradients of light environment and of photosynthetic properties of chloroplasts within a leaf. Ann Bot 56(4):489–499

    Article  CAS  Google Scholar 

  • Terashima I, Fujita T, Inoue T, Chow W, Oguchi R (2009) Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. Plant Cell Physiol 50(4):684–697

    Article  CAS  Google Scholar 

  • Terashima I, Hiroki O, Takashi F, Riichi O (2016) Light environment within a leaf. II. Progress in the past one-third century. J Plant Res 129(3):353–363. https://doi.org/10.1007/s10265-016-0808-1

    Article  CAS  Google Scholar 

  • Verma SB, Dobermann A, Cassman KG, Walters DT, Knops JM, Arkebauer TJ, Suyker AE, Burba GG, Amos B, Yang H (2005) Annual carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems. Agric For Meteorol 131(1–2):77–96

    Article  Google Scholar 

  • Viña A (2004) Remote estimation of leaf area index and biomass in corn and soybean. PhD Dissertation—University of Nebraska-Lincoln

  • Viña A, Gitelson AA, Nguy-Robertson AL, Peng Y (2011) Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sens Environ 115(12):3468–3478

    Article  Google Scholar 

  • Vogelmann T (1993) Plant tissue optics. Annu Rev Plant Biol 44(1):231–251

    Article  Google Scholar 

  • Wendlandt WWM, Hecht HG (1966) Reflectance spectroscopy. Wiley, New York, NY

    Google Scholar 

  • Wolf BM, Blankenship RE (2019) Far-red light acclimation in diverse oxygenic photosynthetic organisms. Photosynth Res 142(3):349–359. https://doi.org/10.1007/s11120-019-00653-6

    Article  CAS  PubMed  Google Scholar 

  • Wu BS, Rufyikiri AS, Orsat V, Lefsrud MG (2019) Re-interpreting the photosynthetically action radiation (PAR) curve in plants. Plant Sci 289:110272. https://doi.org/10.1016/j.plantsci.2019.110272

    Article  CAS  PubMed  Google Scholar 

  • Wu H-Y, Liu L-A, Shi L, Zhang W-F, Jiang C-D (2021) Photosynthetic acclimation during low-light-induced leaf senescence in post-anthesis maize plants. Photosynth Res. https://doi.org/10.1007/s11120-021-00851-1

    Article  PubMed  Google Scholar 

  • Zhang N, Evers JB, Anten NPR, Marcelis LFM (2021) Turning plant interactions upside down: light signals from below matter. Plant Cell Environ 44(4):1111–1118. https://doi.org/10.1111/pce.13886

    Article  CAS  PubMed  Google Scholar 

  • Zhen S, Haidekker M, van Iersel MW (2019) Far-red light enhances photochemical efficiency in a wavelength-dependent manner. Physiol Plant 167(1):21–33

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.S. acknowledges the support from Shared Access Center of Derzhavin Tambov State University user facilities.

Funding

The support and use of facilities and equipment provided by the Center for Advanced Land Management Information Technologies (CALMIT), the School of Natural Resources, and the Carbon Sequestration Program, all at the University of Nebraska-Lincoln, are greatly appreciated. This research was partially supported by the Nebraska Agricultural Experiment Station with funding from the Hatch Act (Accession Number 1002649) through the USDA National Institute of Food and Agriculture. Funding for AmeriFlux data resources was provided by the U.S. Department of Energy’s Office of Science. A.S. acknowledges the support of Russian Foundation for Basic Research (Grant Number 19-016-00016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anatoly Gitelson or Alexei Solovchenko.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

figure a
figure b
figure c

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gitelson, A., Arkebauer, T., Solovchenko, A. et al. An insight into spectral composition of light available for photosynthesis via remotely assessed absorption coefficient at leaf and canopy levels. Photosynth Res 151, 47–60 (2022). https://doi.org/10.1007/s11120-021-00863-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-021-00863-x

Keywords

Navigation