Advertisement

Philosophical Studies

, Volume 175, Issue 3, pp 665–702 | Cite as

Outlines of a theory of structural explanations

Article

Abstract

This paper argues that in some explanations mathematics are playing an explanatory rather than a representational role, and that this feature unifies many types of non-causal or non-mechanistic explanations that some philosophers of science have been recently exploring under various names (mathematical, topological, etc.). After showing how mathematics can play either a representational or an explanatory role by considering two alternative explanations of a same biological pattern—“Bergmann’s rule”—I offer an example of an explanation where the bulk of the explanatory job is done by a mathematical theorem, and where mechanisms involved in the target systems are not explanatorily relevant. Then I account for the way mathematical properties may function in an explanatory way within an explanation by arguing that some mathematical propositions involving variables non directly referring to the target system features constitute constraints to which a whole class of systems should comply, provided they are describable by a mathematical object concerned by those propositions. According to such “constraint account”, those mathematical facts are directly entailing the explanandum (often a limit regime, a robustness property or a steady state), as a consequence of such constraints. I call those explanations “structural”, because here properties of mathematical structures are accounting for the explanandum; various kinds of mathematical structures (algebraic, graph-theoretical, etc.) thereby define various types of structural explanations.

Keywords

Explanation Mechanisms Topological explanation Causation Structure Optimization Mathematical properties Genericity 

Notes

Acknowledgements

I am grateful to Carl Craver, Stuart Glennan, Paul Humphreys and Anya Plutynski for insightful comments and constructive criticism on drafts of this paper, and to Robert Batterman, Laura Felline, Tom Polger, Larry Shapiro and Rasmus Winther for discussions on the arguments. Thanks to Andrew McFarland for a thorough language checking of the text. I also warmly thank an anonymous reviewer for critiques and suggestions that substantially improved the paper. This work is supported by the Grant ANR 13 BSH3 0007 “Explabio”.

References

  1. Altenberg, L. (2004). Open problems in the spectral analysis of evolutionary dynamics. In A. Menon (Ed.), Frontiers of evolutionary computation (pp. 73–102). Boston: Kluwer.Google Scholar
  2. Altenberg, L., & Feldman, M. W. (1987). Selection, generalized transmission, and the evolution of modifier genes. I. The reduction principle. Genetics, 117, 559–572.Google Scholar
  3. Ash, R. (2000). Probability and measure theory. London: Academic Press.Google Scholar
  4. Ariew, A., Rice, C., & Rohwer, Y. (2014). Autonomous-statistical explanations and natural selection. British Journal for the Philosophy of Science, 1–24Google Scholar
  5. Baker, A. (2009). Mathematical explanation in science. British Journal for the Philosophy of Science, 60, 611–633.CrossRefGoogle Scholar
  6. Batterman, R. (2002). The devil in the details: Asymptotic reasoning in explanation, reduction, and emergence. Oxford: Oxford University Press.Google Scholar
  7. Batterman, R. (2010). On the explanatory role of mathematics in empirical science. British Journal for the Philosophy of Science, 61, 1–25.CrossRefGoogle Scholar
  8. Batterman, R., & Rice, C. (2014). Minimal model explanations. Philosophy of Science, 81(3), 349–376.CrossRefGoogle Scholar
  9. Bechtel, W., & Abrahamsen, A. (2005). Explanation: A mechanistic alternative. Studies in History and Philosophy of the Biological and Biomedical Sciences, 36, 421–441.CrossRefGoogle Scholar
  10. Charnov, E. L. (1976). Optimal foraging: The marginal value theorem. Theoretical Population Biology, 9, 129–136.CrossRefGoogle Scholar
  11. Charnov, E. L., & Krebs, J. L. (1974). On clutch size and fitness. Ibis, 116, 217–219.CrossRefGoogle Scholar
  12. Clancy, S. (2008). RNA splicing: Introns, exons and spliceosome. Nature Education, 1(1), 31.Google Scholar
  13. Colizza, V., Pastor-Satorras, R., & Vespignani, A. (2007). Reaction–diffusion processes and metapopulation models in heterogeneous networks. Nature Physics, 3, 276–282.CrossRefGoogle Scholar
  14. Craver, C. (2007). Explaining the brain. New York: Oxford University Press.CrossRefGoogle Scholar
  15. Craver, C., & Darden, L. (2013). In search for mechanisms: Discovery across the life sciences. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  16. Darden, L. (2006). Reasoning in biological discoveries: Essays on mechanisms, interfield relations, and anomaly resolution. Cambridge: Cambridge University Press.Google Scholar
  17. Dorato, M., & Felline, L. (2011). Scientific explanation and scientific structuralism. In A. Bokulich & P. Bokulich (Eds.), scientific structuralism (pp. 161–177). Dordrecht: Springer.Google Scholar
  18. Duarte, C. M., Amthor, J., DeAngelis, D. L., Joyce, L. A., Maranger, R. J., Pace, M. L., Pastor, J., Running, S. (2003). The limits to models in ecology. In C. D. Canham, J. J. Cole, & W. K. Lauenroth (Eds.), Models in ecosystem science (pp. 437–451). Princeton: Princeton University Press.Google Scholar
  19. Edwards, A. W. F. (1994). The fundamental theorem of natural selection. Biological Reviews of the Cambridge Philosophical Society, 69(4), 443–474.CrossRefGoogle Scholar
  20. Ewens, W. J. (1989). An interpretation and proof of the fundamental theorem of natural selection. Theoretical Population Biology, 36(2), 167–180.CrossRefGoogle Scholar
  21. Felline, L. (2015). Mechanisms meet structural explanation. Synthese. doi: 10.1007/s11229-015-0746-9.Google Scholar
  22. Fisher, R. (1930). The genetical theory of natural selection. London: Methuen.CrossRefGoogle Scholar
  23. Frank, S. A. (2009). The common patterns of nature. Journal of Evolutionary Biology, 22, 1563–1585.CrossRefGoogle Scholar
  24. Frank, S. A., & Slatkin, M. (1992). Fisher’s fundamental theorem of natural selection. Trends in Ecology and Evolution, 7, 92–95.CrossRefGoogle Scholar
  25. Friedman, M. (1974). Explanation and scientific understanding. Journal of Philosophy, 71, 5–19.CrossRefGoogle Scholar
  26. Gardner, A. (2009). Adaptation as organism design. Biology Letters, 5, 861–864.CrossRefGoogle Scholar
  27. Gaucherel, C., Munoz, F., & Bérard, S. (2011). Equation against algorithm: Differences and choosing between them? Acta Biotheoretica, 59(1), 67–79.CrossRefGoogle Scholar
  28. Gillespie, J. H. (2004). Population genetics: A concise guide. Baltimore: The Johns Hopkins University Press.Google Scholar
  29. Glennan, S. (ms). The new mechanical philosophy.Google Scholar
  30. Glennan, S. (1996). Mechanisms and the nature of causation. Erkenntnis, 44, 49–71.CrossRefGoogle Scholar
  31. Grafen, A. (2002). A first formal link between the Price equation and an optimisation program. Journal of Theoretical Biology, 217, 75–91.CrossRefGoogle Scholar
  32. Grafen, A. (2007). The formal Darwinism project: A mid-term report. Journal of Evolutionary Biology, 20, 1243–1254.CrossRefGoogle Scholar
  33. Gross, J. L., & Tucker, T. W. (1987). Topological graph theory. Reading, MA: Wiley Interscience.Google Scholar
  34. Hall, N. (2004). Two concepts of cause. In J. Collins, N. Hall, & L. A. Paul (Eds.), Causation and counterfactuals (pp. 225–276). Cambridge: MIT Press.Google Scholar
  35. Hofbauer, J. (2000). From Nash and Brown to Maynard—Smith: Equilibria, dynamics and ESS. Selection, 1, 81–88.CrossRefGoogle Scholar
  36. Humphreys, P. (2014). Explanation as condition satisfaction. Philosophy of Science, 81(5), 1103–1116.CrossRefGoogle Scholar
  37. Huneman, P. (2010). Topological explanations and robustness in biological sciences. Synthese, 177(2), 213–245.CrossRefGoogle Scholar
  38. Huneman, P. (2015). Diversifying the picture of explanations in biological sciences: Ways of combining topology with mechanisms. Synthese. doi: 10.1007/s11229-015-0808-z.Google Scholar
  39. Jones, N. (2014). Bowtie structures, pathway diagrams, and topological explanation. Erkenntnis, 89(5), 1355–1555.CrossRefGoogle Scholar
  40. Karlin, S. (1982). Classifications of selection–migration structures and conditions for a protected polymorphism. In M. K. Hecht, B. Wallace, & G. T. Prance (Eds.), Evolutionary biology (Vol. 14, pp. 61–204). Berlin: Plenum Publishing Corporation.Google Scholar
  41. Kitcher, P. (1989). Explanatory unification and the causal structure of the world. In P. Kitcher & W. Salmon (Eds.), Scientific explanation (pp. 410–505). Minneapolis: University of Minnesota Press.Google Scholar
  42. Kuorikoski, J. (2007). Explaining with equilibria. In J. Persson & P. Ylikoski (Eds.), Rethinking explanation (pp. 149–162). Dordrecht: Springer.CrossRefGoogle Scholar
  43. Lange, M. (2013a). Really statistical explanations and genetic drift. Philosophy of Science, 80(2), 169–188.CrossRefGoogle Scholar
  44. Lange, M. (2013b). What makes a scientific explanation distinctively mathematical? British Journal for the Philosophy of Science, 64, 485–511.CrossRefGoogle Scholar
  45. Lange, M. (2016). Because without cause. New-York: Oxford University Press.CrossRefGoogle Scholar
  46. Levins, R. (1966). The strategy of model building in population biology. American Scientist, 54, 421–431.Google Scholar
  47. Lewis, D. (1973). Causation. Journal of Philosophy, 70, 556–67. Reprinted with Postscripts in Lewis, 1986, 159–213Google Scholar
  48. Lusternik, N., & Sobolev, V. (1961). Elements of functional analysis. London: Frederick Ungar.Google Scholar
  49. Lyon, A. (2014). Why are normal distributions normal? British Journal for Philosophy of Science, 65(3), 621–649.CrossRefGoogle Scholar
  50. Machamer, P., Darden, L., & Craver, C. (2000). Thinking of mechanisms. Philosophy of Science, 67(1), 1–25.CrossRefGoogle Scholar
  51. May, R., Levin, S., & Sugihara, G. (2008). Complex systems: Ecology for bankers. Nature, 451, 893–895.CrossRefGoogle Scholar
  52. Meyn, S., & Tweedie, R. (1993). Markov chains and stochastic stability. Dordrecht: Springer.CrossRefGoogle Scholar
  53. Morrison, M. (2014). Complex systems and renormalization group explanations. Philosophy of Science, 81(5), 1144–1156.CrossRefGoogle Scholar
  54. Nash, J. (1950). Equilibrium points in n-person games. PNAS, 36, 48–49.CrossRefGoogle Scholar
  55. Price, G. R. (1972). Fisher’s fundamental theorem made clear. Annals of Human Genetics, 36, 129–140.CrossRefGoogle Scholar
  56. Rathkopf, C. (2015). Network representation and complex systems. Synthese. doi: 10.1007/s11229-015-0726-0.Google Scholar
  57. Reutlinger. (ms). Are explanations non-causal by virtue of being abstract?Google Scholar
  58. Reutlinger, A. (2006). Is there a monist theory of causal and noncausal explanations? The counterfactual theory of scientific explanation. Philosophy of Science, 83(5), 733–745Google Scholar
  59. Rice, C. (2012). Optimality explanations: A plea for an alternative approach. Biology and Philosophy, 27(5), 685–703.CrossRefGoogle Scholar
  60. Ruelle, D. (1989). Chaotic evolution and strange attractors. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  61. Salmon, W. (1984). Scientific explanation and the causal structure of the world. Princeton: Princeton University Press.Google Scholar
  62. Seung, S. H. (2012). Connectome: How the brain’s wiring makes us who we are. New York: Houghton Mifflin Harcourt Trade.Google Scholar
  63. Shapiro, L. (2015). Mechanism or bust? Explanation in psychology. British Journal for the Philosophy of Science. doi: 10.1093/bjps/axv062.Google Scholar
  64. Sober, E. (1983). Equilibrium Explanation. Philosophical Studies, 43(2), 201–210.Google Scholar
  65. Solé, R. V., & Montoya, J. M. (2001). Complexity and fragility in ecological networks. Proceedings of the Royal Society of London, Series B: Biological Sciences, 268, 2039–2045.CrossRefGoogle Scholar
  66. Strevens, M. (2015). Stochastic independence and causal connection. Erkenntnis, 80(Suppl 3), 605–627.CrossRefGoogle Scholar
  67. Turing, A. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 237(641), 37–72.CrossRefGoogle Scholar
  68. Walsh, D. (2015). Variance, invariance and statistical explanation. Erkenntnis, 80(3), 469–489.CrossRefGoogle Scholar
  69. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics in “small-world” networks. Nature, 393, 440–442.CrossRefGoogle Scholar
  70. Winther, R. (2011). Part-whole science. Synthese, 178, 397–427.CrossRefGoogle Scholar
  71. Woodward, J. (2003). Making things happen: A theory of causal explanation. Oxford: Oxford University Press.Google Scholar
  72. Woodward, J. (2013). II—Mechanistic explanation: Its scope and limits. Aristotelian Society Supplementary, 87(1), 39–65.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Institut d’Histoire et de Philosophie des Sciences et des Techniques (CNRS/Université Paris 1 Sorbonne)ParisFrance

Personalised recommendations