Skip to main content
Log in

Personalized venlafaxine dose prediction using artificial intelligence technology: a retrospective analysis based on real-world data

  • Research Article
  • Published:
International Journal of Clinical Pharmacy Aims and scope Submit manuscript

Abstract

Background

Venlafaxine dose regimens vary considerably between individuals, requiring personalized dosing.

Aim

This study aimed to identify dose-related influencing factors of venlafaxine through real-world data analysis and to construct a personalized dose model using advanced artificial intelligence techniques.

Method

We conducted a retrospective study on patients with depression treated with venlafaxine. Significant variables were selected through a univariate analysis. Subsequently, the predictive performance of seven models (XGBoost, LightGBM, CatBoost, GBDT, ANN, TabNet, and DT) was compared. The algorithm that demonstrated optimal performance was chosen to establish the dose prediction model. Model validation used confusion matrices and ROC analysis. Additionally, a dose subgroup analysis was conducted.

Results

A total of 298 patients were included. TabNet was selected to establish the venlafaxine dose prediction model, which exhibited the highest performance with an accuracy of 0.80. The analysis identified seven crucial variables correlated with venlafaxine daily dose, including blood venlafaxine concentration, total protein, lymphocytes, age, globulin, cholinesterase, and blood platelet count. The area under the curve (AUC) for predicting venlafaxine doses of 75 mg, 150 mg, and 225 mg were 0.90, 0.85, and 0.90, respectively.

Conclusion

We successfully developed a TabNet model to predict venlafaxine doses using real-world data. This model demonstrated substantial predictive accuracy, offering a personalized dosing regimen for venlafaxine. These findings provide valuable guidance for the clinical use of the drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Morton WA, Sonne SC, Verga MA. Venlafaxine: a structurally unique and novel antidepressant. Ann Pharmacother. 1995;29(4):387–95.

    Article  CAS  PubMed  Google Scholar 

  2. Harvey AT, Rudolph RL, Preskorn SH. Evidence of the dual mechanisms of action of venlafaxine. Arch Gen Psychiatry. 2000;57(5):503–9. https://doi.org/10.1001/archpsyc.57.5.503.

    Article  CAS  PubMed  Google Scholar 

  3. Fogelman SM, Schmider J, Venkatakrishnan K, et al. O- and N-demethylation of venlafaxine in vitro by human liver microsomes and by microsomes from cDNA-transfected cells: effect of metabolic inhibitors and SSRI antidepressants. Neuropsychopharmacology. 1999;20(5):480–90.

    Article  CAS  PubMed  Google Scholar 

  4. Ostad Haji E, Hiemke C, Pfuhlmann B. Therapeutic drug monitoring for antidepressant drug treatment. Curr Pharm Des. 2012;18(36):5818–27.

    Article  PubMed  Google Scholar 

  5. McAlpine DE, Biernacka JM, Mrazek DA, et al. Effect of cytochrome P450 enzyme polymorphisms on pharmacokinetics of venlafaxine. Ther Drug Monit. 2011;33(1):14–20.

    Article  CAS  PubMed  Google Scholar 

  6. Suwała J, Machowska M, Wiela-Hojeńska A. Venlafaxine pharmacogenetics: a comprehensive review. Pharmacogenomics. 2019;20(11):829–45.

    Article  PubMed  Google Scholar 

  7. Kobylianskii J, Wu PE. Venlafaxine-induced hypoglycemia. CMAJ. 2021;193(16):E568.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Saade YM, Nicol G, Lenze EJ, et al. Comorbid anxiety in late-life depression: Relationship with remission and suicidal ideation on venlafaxine treatment. Depress Anxiety. 2019;36(12):1125–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alexander J, Nillsen A. Venlafaxine-induced delirium. Aust N Z J Psychiatry. 2011;45(7):606.

    Article  PubMed  Google Scholar 

  10. Murphy L, Rasmussen J, Murphy NG. Venlafaxine overdose treated with extracorporeal life support. CMAJ. 2021;193(5):E167–70.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Deo RC. Machine learning in medicine. Circulation. 2015;132(20):1920–30.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Blonde L, Khunti K, Harris SB, et al. Interpretation and impact of real-world clinical data for the practicing clinician. Adv Ther. 2018;35(11):1763–74.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Palacios M. The quality of research with real-world evidence. Colomb Med (Cali). 2019;50(3):140–1.

    PubMed  Google Scholar 

  14. Joseph LP, Joseph EA, Prasad R. Explainable diabetes classification using hybrid Bayesian-optimized TabNet architecture. Comput Biol Med. 2022;151(Pt A):106178.

    Article  PubMed  Google Scholar 

  15. Wei X, Ouyang H, Liu M. Stock index trend prediction based on TabNet feature selection and long short-term memory. PLoS ONE. 2022;17(12):e0269195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yan J, Xu T, Yu Y, et al. Rainfall forecast model based on the TabNet model. Water. 2021;13(9):1272.

    Article  Google Scholar 

  17. Lundberg S, Lee S I. A unified approach to interpreting model predictions. Adv Neural Inf Process Syst 2017;30. https://doi.org/10.48550/arXiv.1705.07874

  18. Coutens B, Yrondi A, Rampon C, et al. Psychopharmacological properties and therapeutic profile of the antidepressant venlafaxine. Psychopharmacology. 2022;239(9):2735–52.

    Article  CAS  PubMed  Google Scholar 

  19. Debonnel G, Saint-André E, Hébert C, et al. Differential physiological effects of a low dose and high doses of venlafaxine in major depression. Int J Neuropsychopharmacol. 2007;10(1):51–61.

    Article  CAS  PubMed  Google Scholar 

  20. Furukawa TA, Cipriani A, Cowen PJ, et al. Optimal dose of selective serotonin reuptake inhibitors, venlafaxine, and mirtazapine in major depression: a systematic review and dose-response meta-analysis. Lancet Psychiatry. 2019;6(7):601–9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang ZZ, Deng SH, Lu HY, et al. Effect of venlafaxine dosage, valproic acid concentration, sex, and age on steady state dose-corrected concentrations of venlafaxine and O-desmethylvenlafaxine: a retrospective analysis of therapeutic drug monitoring data in a Chinese population. Hum Psychopharmacol. 2020;35(3):e2733.

    Article  CAS  PubMed  Google Scholar 

  22. Smolarczyk-Kosowska J, Kosowski M, Kunert Ł, et al. Impact of venlafaxine on platelet count and activity-case report and narrative review. Medicina (Kaunas). 2022;58(5):626.

    Article  PubMed  Google Scholar 

  23. Gronau W, Paslakis G, Lederbogen F, et al. Increased platelet count after treatment with venlafaxine or mirtazapine in depressed patients. Pharmacopsychiatry. 2015;48(1):37–9.

    CAS  PubMed  Google Scholar 

  24. Vinholt PJ, Hvas AM, Frederiksen H, et al. Platelet count is associated with cardiovascular disease, cancer and mortality: A population-based cohort study. Thromb Res. 2016;148:136–42.

    Article  CAS  PubMed  Google Scholar 

  25. Castberg I, Westin AA, Skogvoll E, et al. Effects of age and gender on the serum levels of clozapine, olanzapine, risperidone, and quetiapine. Acta Psychiatr Scand. 2017;136(5):455–64.

    Article  CAS  PubMed  Google Scholar 

  26. Fekete S, Scherf-Clavel M, Gerlach M, et al. Dose-corrected serum concentrations and metabolite to parent compound ratios of venlafaxine and risperidone from childhood to old age. Pharmacopsychiatry. 2021;54(3):117–25.

    Article  CAS  PubMed  Google Scholar 

  27. Sobieraj DM, Martinez BK, Hernandez AV, et al. Adverse effects of pharmacologic treatments of major depression in older adults. J Am Geriatr Soc. 2019;67(8):1571–81.

    Article  PubMed  Google Scholar 

  28. Strawn JR, Mills JA, Suresh V, et al. The impact of age on antidepressant response: a mega-analysis of individuals with major depressive disorder. J Psychiatr Res. 2023;159:266–73.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yang XX, Hu ZP, Chan SY, et al. Monitoring drug-protein interaction. Clin Chim Acta. 2006;365(1–2):9–29.

    Article  CAS  PubMed  Google Scholar 

  30. Celestin MN, Musteata FM. Impact of changes in free concentrations and drug-protein binding on drug dosing regimens in special populations and disease states. J Pharm Sci. 2021;110(10):3331–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Berezhkovskiy LM. On the calculation of the concentration dependence of drug binding to plasma proteins with multiple binding sites of different affinities: determination of the possible variation of the unbound drug fraction and calculation of the number of binding sites of the protein. J Pharm Sci. 2007;96(2):249–57.

    Article  CAS  PubMed  Google Scholar 

  32. Berezhkovskiy LM. On the influence of protein binding on pharmacological activity of drugs. J Pharm Sci. 2010;99(4):2153–65.

    Article  CAS  PubMed  Google Scholar 

  33. Başterzi AD, Yazici K, Buturak V, et al. Effects of venlafaxine and fluoxetine on lymphocyte subsets in patients with major depressive disorder: a flow cytometric analysis. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(1):70–5.

    Article  PubMed  Google Scholar 

  34. Fazzino F, Obregón F, Morles M, et al. Taurine transporter in lymphocytes of patients with major depression treated with venlafaxine plus psychotherapy. Adv Exp Med Biol. 2009;643:217–24.

    Article  CAS  PubMed  Google Scholar 

  35. Billioti de Gage S, Collin C, Le-Tri T, et al. Antidepressants and hepatotoxicity: a cohort study among 5 million individuals registered in the French national health insurance database. CNS Drugs. 2018;32(7):673–84.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Voican CS, Corruble E, Naveau S, et al. Antidepressant-induced liver injury: a review for clinicians. Am J Psychiatry. 2014;171(4):404–15.

    Article  PubMed  Google Scholar 

  37. Takeda H, Nishikawa H, Iguchi E, et al. Impact of pretreatment serum cholinesterase level in unresectable advanced hepatocellular carcinoma patients treated with sorafenib. Mol Clin Oncol. 2013;1(2):241–8.

    Article  PubMed  Google Scholar 

  38. Arik SO, Pfister T. TabNet: Attentive Interpretable Tabular Learning, 2019, 07442. http://arxiv.org/abs/1908. Available from: https://doi.org/10.48550/arXiv.1908.07442. Accessed 16 Nov 2023.

Download references

Acknowledgements

None.

Funding

This work was supported by the Finance Department of Hebei Province in China (Grant Number ZF2023020) and the Medical science research project of Hebei Health Commission (Grant Number 20221440).

Author information

Authors and Affiliations

Author notes

  1. Jing Yu and Chunhua Zhou are corresponding authors and contributed equally to this work.

    Authors

    Corresponding author

    Correspondence to Jing Yu.

    Ethics declarations

    Conflicts of interest

    Jinyuan Zhang and Fei Gao are employed by Beijing Medicinovo Technology Co. Ltd., China. Xin Hao is employed by Dalian Medicinovo Technology Co. Ltd., China. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationship that could be construed as a potential conflict of interest.

    Additional information

    Publisher's Note

    Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

    Supplementary Information

    Below is the link to the electronic supplementary material.

    Supplementary file1 (DOCX 147 KB)

    Rights and permissions

    Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

    Reprints and permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    Liu, Y., Yu, Z., Ye, X. et al. Personalized venlafaxine dose prediction using artificial intelligence technology: a retrospective analysis based on real-world data. Int J Clin Pharm (2024). https://doi.org/10.1007/s11096-024-01729-7

    Download citation

    • Received:

    • Accepted:

    • Published:

    • DOI: https://doi.org/10.1007/s11096-024-01729-7

    Keywords

    Navigation