Skip to main content
Log in

Development of Amorphous Solid Dispersion Sustained-Release Formulations with Polymer Composite Matrix-Regulated Stable Release Plateaus

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This study was designed to develop ibuprofen (IBU) sustained-release amorphous solid dispersion (ASD) using polymer composites matrix with drug release plateaus for stable release and to further reveal intrinsic links between polymer’ matrix ratios and drug release behaviors.

Methods

Hydrophilic polymers and hydrophobic polymers were combined to form different composite matrices in developing IBU ASD formulations by hot melt extrusion technique. The intrinsic links between the mixed polymer matrix ratio and drug dissolution behaviors was deeply clarified from the dissolution curves of hydrophilic polymers and swelling curves of composite matrices, and intermolecular forces among the components in ASDs.

Results

IBU + ammonio methacrylate copolymer type B (RSPO) + poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP VA64) physical mixtures presented unstable release behaviors with large error bars due to inhomogeneities at the micrometer level. However, IBU-RSPO-PVP VA64 ASDs showed a "dissolution plateau phenomenon", i.e., release behaviors of IBU in ASDs were unaffected by polymer ratios when PVP VA64 content was 35% ~ 50%, which could reduce risks of variations in release behaviors due to fluctuations in prescriptions/processes. The release of IBU in ASDs was simultaneously regulated by the PVP VA64-mediated "dissolution" and RSPO-PVP VA64 assembly-mediated "swelling". Radial distribution function suggested that similar intermolecular forces between RSPO and PVP VA64 were key mechanisms for the "dissolution plateau phenomenon" in ASDs at 35% ~ 50% of PVP VA64.

Conclusions

This study provided ideas for developing ASD sustained-release formulations with stable release plateau modulated by polymer combinations, taking full advantages of simple process/prescription, ease of scale-up and favorable release behavior of ASD formulations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Nokhodchi A, Raja S, Patel P, Asare-Addo K. The role of oral controlled release matrix tablets in drug delivery systems. BioImpacts. 2012;2:175–87. https://doi.org/10.5681/bi.2012.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Prajapati SK, Jain A, Jain A, Jain S. Biodegradable polymers and constructs: a novel approach in drug delivery. Eur Polym J. 2019;120: 109191. https://doi.org/10.1016/j.eurpolymj.2019.08.018.

    Article  CAS  Google Scholar 

  3. Hu LD, Liu Y, Tang X, Zhang Q. Preparation and in vitro/in vivo evaluation of sustained-release metformin hydrochloride pellets. Eur J Pharm Biopharm. 2006;64:185–192. https://doi.org/10.1016/j.ijpharm.2011.12.053.

  4. Qin C, He W, Zhu CL, Wu MM, Jin Z, Zhang Q, Wang GJ, Yin LF. Controlled release of metformin hydrochloride and repaglinide from sandwiched osmotic pump tablet. Int J Pharm. 2014;466:276–85. https://doi.org/10.1016/j.ijpharm.2014.03.002.

    Article  CAS  PubMed  Google Scholar 

  5. Bibi A, Sadiqur R, Akhtar T, Akhtar K, Farooq M, Shahzad MI. Alginate-chitosan/MWCNTs nanocomposite: a novel approach for sustained release of Ibuprofen. J Poly Res. 2021;28:363. https://doi.org/10.1007/s10965-020-02342-8.

  6. Bode C, Kranz H, Fivez A, Siepmann F, Siepmann J. Often neglected: PLGA/PLA swelling orchestrates drug release: HME implants. J Control Release. 2019;306:97–107. https://doi.org/10.1016/j.jconrel.2019.05.039.

    Article  CAS  PubMed  Google Scholar 

  7. Schver G, Nadvorny D, Lee PI. Evolution of supersaturation from amorphous solid dispersions in water-insoluble polymer carriers: Effects of swelling capacity and interplay between partition and diffusion. Int J Pharm. 2020;581: 119292. https://doi.org/10.1016/j.ijpharm.2020.119292.

    Article  CAS  PubMed  Google Scholar 

  8. Sun DD, Lee PI. Probing the mechanisms of drug release from amorphous solid dispersions in medium-soluble and medium-insoluble carriers. J Control Release. 2015;211:85-93. https://doi.org/10.1016/j.jconrel.2015.06.004.

  9. Li N, Taylor LS. Tailoring supersaturation from amorphous solid dispersions. J Control Release. 2018;279:114–25. https://doi.org/10.1016/j.jconrel.2018.04.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Piao ZZ, Lee KH, Kim DJ, Lee HG, Lee J, Oh KT, Lee BJ. Comparison of release-controlling efficiency of polymeric coating materials using matrix-type casted films and diffusion-controlled coated tablet. AAPS PharmSciTech. 2010;11:630–6. https://doi.org/10.1208/s12249-010-9377-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Verma RK, Krishna DM, Garg S. Formulation aspects in the development of osmotically controlled oral drug delivery systems. J Control Release. 2002;79:7–27. https://doi.org/10.1016/S0168-3659(01)00550-8.

    Article  CAS  PubMed  Google Scholar 

  12. Li NN, Fan N, Wu B, Dai GL, Jiang CJ, Guo Y, Wang DL. Preparation and in vitro/in vivo evaluation of azilsartan osmotic pump tablets based on the preformulation investigation. Drug Dev Ind Pharm. 2019;45:1079–88. https://doi.org/10.1080/03639045.2019.1593441.

    Article  CAS  PubMed  Google Scholar 

  13. Liu CC, Li JB, Li K, Xie CF, Liu JD. Oxidized konjac glucomannan-cassava starch and sucrose esters as novel excipients for sustained-release matrix tablets. Int J Biol Macromol. 2010;156:1045–52. https://doi.org/10.1016/j.ijbiomac.2019.11.146.

    Article  CAS  Google Scholar 

  14. Corti G, Cirri M, Maestrelli F, Mennini N, Mura P. Sustained-release matrix tablets of metformin hydrochloride in combination with triacetyl-β-cyclodextrin. Eur J Pharm Biopharm. 2008;68:303–9. https://doi.org/10.1016/j.ejpb.2007.06.004.

    Article  CAS  PubMed  Google Scholar 

  15. Duong TV, Van den Mooter G. The role of the carrier in the formulation of pharmaceutical solid dispersions part II: amorphous carriers. Expert Opin Drug Deliv. 2016;13:1681–94. https://doi.org/10.1080/17425247.2016.1198768.

    Article  CAS  PubMed  Google Scholar 

  16. Maincent J, Williams RO. Sustained-release amorphous solid dispersions. Drug Deliv Transl Res. 2018;8:1714–25. https://doi.org/10.1007/s13346-018-0494-8.

    Article  CAS  PubMed  Google Scholar 

  17. Yang Y, Wang H, Li H, Ou Z, Yang G. 3D printed tablets with internal scaffold structure using ethyl cellulose to achieve sustained ibuprofen release. Eur J Pharm Sci. 2018;115:11–8. https://doi.org/10.1016/j.ejps.2018.01.005.

    Article  CAS  PubMed  Google Scholar 

  18. Shi K, Salvage JP, Maniruzzaman M, Nokhodchi A. Role of release modifiers to modulate drug release from fused deposition modelling (FDM) 3D printed tablets. Int J Pharm. 2021;597: 120315. https://doi.org/10.1016/j.ijpharm.2021.120315.

    Article  CAS  PubMed  Google Scholar 

  19. Shin TH, Ho MJ, Kim SR, Im SH, Kim CH, Lee S, Kang MJ, Choi YW. Formulation and in vivo pharmacokinetic evaluation of ethyl cellulose-coated sustained release multiple-unit system of tacrolimus. Int J Biol Macromol. 2018;109:544–50. https://doi.org/10.1016/j.ijbiomac.2017.12.111.

    Article  CAS  PubMed  Google Scholar 

  20. Albarahmieh E, Qi S, Craig DQM. Hot melt extruded transdermal films based on amorphous solid dispersions in Eudragit RS PO: the inclusion of hydrophilic additives to develop moisture-activated release systems. Int J Pharm. 2016;514:270–81. https://doi.org/10.1016/j.ijpharm.2016.06.137.

    Article  CAS  PubMed  Google Scholar 

  21. Lee YS, Song JG, Lee SH, Han HK. Sustained-release solid dispersion of pelubiprofen using the blended mixture of aminoclay and pH independent polymers: preparation and in vitro/in vivo characterization. Drug Deliv. 2017;24:1731–9. https://doi.org/10.1080/10717544.2017.1399304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yoo HS, Oh JE, Lee KH, Park TG. Biodegradable nanoparticles containing doxorubicin-PLGA conjugate for sustained release. Pharm Res. 1999;16:1114–8. https://doi.org/10.1023/A:1018908421434.

    Article  CAS  PubMed  Google Scholar 

  23. Nieto K, Mallery SR, Schwendeman SP. Microencapsulation of amorphous solid dispersions of fenretinide enhances drug solubility and release from PLGA in vitro and in vivo. Int J Pharm. 2010;586: 119475. https://doi.org/10.1016/j.ijpharm.2020.119475.

    Article  CAS  Google Scholar 

  24. Maniruzzaman M, Morgan DJ, Mendham AP, Pang JY, Snowden MJ, Douroumis D. Drug-polymer intermolecular interactions in hot-melt extruded solid dispersions. Int J Pharm. 2013;443(1–2):199–208. https://doi.org/10.1111/jphp.12183.

    Article  CAS  PubMed  Google Scholar 

  25. Wang LA, Cui FD, Hayase T, Sunada H. Preparation and evaluation of solid dispersion for nitrendipine-carbopol and nitrendipine-HPMCP systems using a twin screw extruder. Chem Pharm Bull. 2005;53(10):1240–5. https://doi.org/10.1248/cpb.53.1240.

    Article  CAS  Google Scholar 

  26. Schver G, Nadvorny D, Lee PI. Evolution of supersaturation from amorphous solid dispersions in water-insoluble polymer carriers: Effects of swelling capacity and interplay between partition and diffusion. Int J Pharm. 2020;581: 119292. https://doi.org/10.1016/j.ijpharm.2020.119292.

    Article  CAS  PubMed  Google Scholar 

  27. Marks JA, Wegiel LA, Taylor LS, Edgar KJ. Pairwise polymer blends for oral drug delivery. J Pharm Sci. 2014;103:2871–83. https://doi.org/10.1002/jps.23991.

    Article  CAS  PubMed  Google Scholar 

  28. Nguyen TNG, Tran PHL, Vo TV, Duan W, Tran TTG. Development of a sustained release solid dispersion using swellable polymer by melting method. Pharm Res. 2016;33:102–9. https://doi.org/10.1007/s11095-015-1767-2.

    Article  CAS  PubMed  Google Scholar 

  29. Li Y, Lu M, Wu C. PVP VA64 as a novel release-modifier for sustained-release mini-matrices prepared via hot melt extrusion. Drug Deliv Transl Res. 2018;8:1670–8. https://doi.org/10.1007/s13346-017-0437-9.

    Article  CAS  PubMed  Google Scholar 

  30. Shergill M, Patel M, Khan S, Bashir A, McConville C. Development and characterisation of sustained release solid dispersion oral tablets containing the poorly water soluble drug disulfiram. Int J Pharm. 2016;497:3–11. https://doi.org/10.1016/j.ijpharm.2015.11.029.

    Article  CAS  PubMed  Google Scholar 

  31. Shi K, Salvage JP, Maniruzzaman M, Nokhodchi A. Role of release modifiers to modulate drug release from fused deposition modelling (FDM) 3D printed tablets. Int J Pharm. 2021;597: 120315. https://doi.org/10.1016/j.ijpharm.2021.120315.

    Article  CAS  PubMed  Google Scholar 

  32. Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliver Rev. 2001;48:139–57. https://doi.org/10.1016/j.addr.2012.09.028.

    Article  CAS  Google Scholar 

  33. Wilmer CE, Kim KC, Snurr RQ. An extended charge equilibration method. J Phys Chem Lett. 2012;3:2506–11. https://doi.org/10.1021/jz3008485.

    Article  CAS  PubMed  Google Scholar 

  34. Panda DK, Bhargava BL. Molecular dynamics investigation of non-ionic deep eutectic solvents. J Mol Graph Model. 2022;113: 108152. https://doi.org/10.1016/j.jmgm.2022.108152.

    Article  CAS  PubMed  Google Scholar 

  35. Yang Y, Tang W, Liu S, Han D, Liu Y, Gong JJ. Solubility of benzoin in three binary solvent mixtures and investigation of intermolecular interactions by molecular dynamic simulation. J Mol Liq. 2017;243:472–83. https://doi.org/10.1016/j.molliq.2017.07.125.

    Article  CAS  Google Scholar 

  36. Ren T, Chen J, Qi P, Xiao P, Wang P. Goserelin/PLGA solid dispersion used to prepare long-acting microspheres with reduced initial release and reduced fluctuation of drug serum concentration in vivo. Int J Pharm. 2022;615: 121474. https://doi.org/10.1016/j.ijpharm.2022.121474.

    Article  CAS  PubMed  Google Scholar 

  37. Kunal K, Robertson CG, Pawlus S, Hahn SF, Sokolov AP. Role of chemical structure in fragility of polymers: a qualitative picture. Macromolecules. 2008;41(19):7232–8. https://doi.org/10.1021/ma801155c.

    Article  CAS  Google Scholar 

  38. Gera T, Smausz T, Kopniczky J, Galbács G, Ambrus R, Szabó-Révész P, Hopp B. Production of ibuprofen in crystalline and amorphous forms by Pulsed Laser Deposition (PLD). Appl Surf Sci. 2019;493:359–67. https://doi.org/10.1016/j.apsusc.2019.06.254.

    Article  CAS  Google Scholar 

  39. Shi NQ, Lai HW, Zhang Y, Feng B, Xiao X, Zhang HM, Li ZQ, Qi XR. On the inherent properties of Soluplus and its application in ibuprofen solid dispersions generated by microwave-quench cooling technology. Pharm Dev Technol. 2018;23:573–86. https://doi.org/10.1080/10837450.2016.1256409.

    Article  CAS  PubMed  Google Scholar 

  40. Devotta I, Premnath V, Badiger MV, Rajamohanan PR, Ganapathy S, Mashelkar RA. On the dynamics of mobilization in swelling-dissolving polymeric systems. Macromolecules. 1994;27:532–9. https://doi.org/10.1021/ma00080a030.

    Article  CAS  Google Scholar 

  41. Han P, Nie W, Zhao G, Gao P. Theoretical investigation on the structure and physicochemical properties of choline chloride-based deep eutectic solvents. J Mol Liq. 2022;366: 120243. https://doi.org/10.1016/j.molliq.2022.120243.

    Article  CAS  Google Scholar 

  42. Pandey H, Parashar V, Parashar R, Prakash R, Ramteke PW, Pandey AC. Controlled drug release characteristics and enhanced antibacterial effect of graphene nanosheets containing gentamicin sulfate. Nanoscale. 2011;3:4104–8. https://doi.org/10.1039/C1NR10661A.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (82373824, 82104401, 82274217, 82204636), the Natural Science Foundation of Jiangsu Province (SBK2020042291), “Double First-Class” University Project (3342100010, 2632021ZD15).

Author information

Authors and Affiliations

Authors

Contributions

Lingwu Chen: Conceptualization, Data curation, Writing—Original Draft. Enshi Hu: Methodology, Data curation, Writing—Original draft. Peiya Shen: Methodology, Formal analysis, Investigation. Shuai Qian: Investigation, Visualization, Validation. Weili Heng: Project administration, Funding acquisition. Jianjun Zhang: Validation, Funding acquisition. Yuan Gao: Supervision, Writing—Review & Editing. Yuanfeng Wei: Supervision, Writing—Review & Editing, Funding acquisition.

Corresponding authors

Correspondence to Jianjun Zhang, Yuan Gao or Yuanfeng Wei.

Ethics declarations

Competing Interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2863 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Hu, E., Shen, P. et al. Development of Amorphous Solid Dispersion Sustained-Release Formulations with Polymer Composite Matrix-Regulated Stable Release Plateaus. Pharm Res (2024). https://doi.org/10.1007/s11095-024-03709-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-024-03709-y

Keywords

Navigation