Skip to main content
Log in

Effects of Additives on the Physical Stability and Dissolution of Polymeric Amorphous Solid Dispersions: a Review

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Polymeric amorphous solid dispersion (ASD) is a popular approach for enhancing the solubility of poorly water-soluble drugs. However, achieving both physical stability and dissolution performance in an ASD prepared with a single polymer can be challenging. Therefore, a secondary excipient can be added. In this paper, we review three classes of additives that can be added internally to ASDs: (i) a second polymer, to form a ternary drug-polymer–polymer ASD, (ii) counterions, to facilitate in situ salt formation, and (iii) surfactants. In an ASD prepared with a combination of polymers, each polymer exerts a unique function, such as a stabilizer in the solid state and a crystallization inhibitor during dissolution. In situ salt formation in ASD usually leads to substantial increases in the glass transition temperature, contributing to improved physical stability. Surfactants can enhance the wettability of ASD particles, thereby promoting rapid drug release. However, their potential adverse effects on physical stability and dissolution, resulting from enhanced molecular mobility and competitive molecular interaction with the polymer, respectively, warrant careful consideration. Finally, we discuss the impact of magnesium stearate and inorganic salts, excipients added externally upon downstream processing, on the solid-state stability as well as the dissolution of ASD tablets.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B. 2015;5:442–53.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Baghel S, Cathcart H, O’Reilly NJ. Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J Pharm Sci. 2016;105:2527–44.

    Article  CAS  PubMed  Google Scholar 

  3. Taylor LS, Zhang GGZ. Physical chemistry of supersaturated solutions and implications for oral absorption. Adv Drug Deliv Rev. 2016;101:122–42.

    Article  CAS  PubMed  Google Scholar 

  4. Saboo S, Mugheirbi NA, Zemlyanov DY, Kestur US, Taylor LS. Congruent release of drug and polymer: a “sweet spot” in the dissolution of amorphous solid dispersions. J Control Release. 2019;298:68–82.

    Article  CAS  PubMed  Google Scholar 

  5. Indulkar AS, Gao Y, Raina SA, Zhang GGZ, Taylor LS. Exploiting the phenomenon of liquid–liquid phase separation for enhanced and sustained membrane transport of a poorly water-soluble drug. Mol Pharm. 2016;13:2059–69.

    Article  CAS  PubMed  Google Scholar 

  6. Chen Y, Liu C, Chen Z, Su C, Hageman M, Hussain M, et al. Drug–polymer–water interaction and its implication for the dissolution performance of amorphous solid dispersions. Mol Pharm. 2015;12:576–89.

    Article  CAS  PubMed  Google Scholar 

  7. Kwon, Giri, Song, Bae, Lee, Kim. Spray-dried amorphous solid dispersions of atorvastatin calcium for improved supersaturation and oral bioavailability. Pharmaceutics. 2019;11:461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Indulkar AS, Lou X, Zhang GGZ, Taylor LS. Insights into the dissolution mechanism of ritonavir–copovidone amorphous solid dispersions: importance of congruent release for enhanced performance. Mol Pharm. 2019;16:1327–39.

    Article  CAS  PubMed  Google Scholar 

  9. Saboo S, Moseson DE, Kestur US, Taylor LS. Patterns of drug release as a function of drug loading from amorphous solid dispersions: a comparison of five different polymers. Eur J Pharm Sci. 2020;155: 105514.

    Article  CAS  PubMed  Google Scholar 

  10. Sahoo A, Suryanarayanan R, Siegel RA. Stabilization of amorphous drugs by polymers: the role of overlap concentration (C *). Mol Pharm. 2020;17:4401–6.

    Article  CAS  PubMed  Google Scholar 

  11. Mistry P, Mohapatra S, Gopinath T, Vogt FG, Suryanarayanan R. Role of the strength of drug–polymer interactions on the molecular mobility and crystallization inhibition in ketoconazole solid dispersions. Mol Pharm. 2015;12:3339–50.

    Article  CAS  PubMed  Google Scholar 

  12. Kothari K, Ragoonanan V, Suryanarayanan R. The role of drug–polymer hydrogen bonding interactions on the molecular mobility and physical stability of nifedipine solid dispersions. Mol Pharm. 2015;12:162–70.

    Article  CAS  PubMed  Google Scholar 

  13. Sarabu S, Kallakunta VR, Bandari S, Batra A, Bi V, Durig T, et al. Hypromellose acetate succinate based amorphous solid dispersions via hot melt extrusion: effect of drug physicochemical properties. Carbohydr Polym. 2020;233: 115828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hiew TN, Zemlyanov DY, Taylor LS. Balancing solid-state stability and dissolution performance of lumefantrine amorphous solid dispersions: the role of polymer choice and drug–polymer interactions. Mol Pharm. 2022;19:392–413.

    Article  CAS  PubMed  Google Scholar 

  15. Liu L, Chen L, Müllers W, Serno P, Qian F. Water-resistant drug–polymer interaction contributes to the formation of nano-species during the dissolution of felodipine amorphous solid dispersions. Mol Pharm. 2022;19:2888–99.

    Article  CAS  PubMed  Google Scholar 

  16. Chen Y, Pui Y, Chen H, Wang S, Serno P, Tonnis W, et al. Polymer-mediated drug supersaturation controlled by drug–polymer interactions persisting in an aqueous environment. Mol Pharm. 2019;16:205–13.

    Article  CAS  PubMed  Google Scholar 

  17. Amponsah-Efah KK, Mistry P, Eisenhart R, Suryanarayanan R. The influence of the strength of drug–polymer interactions on the dissolution of amorphous solid dispersions. Mol Pharm. 2021;18:174–86.

    Article  CAS  PubMed  Google Scholar 

  18. Saboo S, Kestur US, Flaherty DP, Taylor LS. Congruent release of drug and polymer from amorphous solid dispersions: insights into the role of drug-polymer hydrogen bonding, surface crystallization, and glass transition. Mol Pharm. 2020;17:1261–75.

    Article  CAS  PubMed  Google Scholar 

  19. Que C, Deac A, Zemlyanov DY, Qi Q, Indulkar AS, Gao Y, et al. Impact of drug–polymer intermolecular interactions on dissolution performance of copovidone-based amorphous solid dispersions. Mol Pharm. 2021;18:3496–508.

    Article  CAS  PubMed  Google Scholar 

  20. Yoo S, Krill SL, Wang Z, Telang C. Miscibility/stability considerations in binary solid dispersion systems composed of functional excipients towards the design of multi-component amorphous systems. J Pharm Sci. 2009;98:4711–23.

    Article  CAS  PubMed  Google Scholar 

  21. Wang X, Michoel A, Van den Mooter G. Solid state characteristics of ternary solid dispersions composed of PVP VA64, Myrj 52 and itraconazole. Int J Pharm. 2005;303:54–61.

    Article  CAS  PubMed  Google Scholar 

  22. Ghebremeskel AN, Vemavarapu C, Lodaya M. Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API: selection of polymer–surfactant combinations using solubility parameters and testing the processability. Int J Pharm. 2007;328:119–29.

    Article  CAS  PubMed  Google Scholar 

  23. Wang F, Yu W, Popescu C, Ibrahim AA, Yu D, Pearson R, et al. Cholecalciferol complexation with hydroxypropyl-β-cyclodextrin (HPBCD) and its molecular dynamics simulation. Pharm Dev Technol. 2022;27:389–98.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Saokham P, Muankaew C, Jansook P, Loftsson T. Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules. 2018;23:1161.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Loftsson T. Increasing the cyclodextrin complexation of drugs and drug biovailability through addition of water-soluble polymers. Pharmazie. 1998;53:733–40.

    CAS  PubMed  Google Scholar 

  26. Rowe RC, Sheskey P, Quinn M. Handbook of Pharmaceutical excipients. Ninth edition. Libros Digitales-Pharmaceutical Press; 2009.

  27. Bhujbal SV, Mitra B, Jain U, Gong Y, Agrawal A, Karki S, et al. Pharmaceutical amorphous solid dispersion: a review of manufacturing strategies. Acta Pharm Sin B. 2021;11:2505–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thakral S, Thakral NK, Majumdar DK. Eudragit®: a technology evaluation. Expert Opin Drug Deliv. 2013;10:131–49.

    Article  CAS  PubMed  Google Scholar 

  29. Duggirala NK, Li J, Kumar NSK, Gopinath T, Suryanarayanan R. A supramolecular synthon approach to design amorphous solid dispersions with exceptional physical stability. Chem Commun. 2019;55:5551–4.

    Article  CAS  Google Scholar 

  30. Attia MS, Elshahat A, Hamdy A, Fathi AM, Emad-Eldin M, Ghazy F-ES, et al. Soluplus® as a solubilizing excipient for poorly water-soluble drugs: recent advances in formulation strategies and pharmaceutical product features. J Drug Deliv Sci Technol. 2023;84:104519.

  31. Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN Pharm. 2012;2012:1–10.

    Google Scholar 

  32. Taylor LS, Zografi G. Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm Res. 1997;14:1691–8.

    Article  CAS  PubMed  Google Scholar 

  33. Bhardwaj SP, Arora KK, Kwong E, Templeton A, Clas S-D, Suryanarayanan R. Mechanism of amorphous itraconazole stabilization in polymer solid dispersions: role of molecular mobility. Mol Pharm. 2014;11:4228–37.

    Article  CAS  PubMed  Google Scholar 

  34. Mohapatra S, Samanta S, Kothari K, Mistry P, Suryanarayanan R. Effect of polymer molecular weight on the crystallization behavior of indomethacin amorphous solid dispersions. Cryst Growth Des. 2017;17:3142–50.

    Article  CAS  Google Scholar 

  35. Paradkar A, Ambike AA, Jadhav BK, Mahadik KR. Characterization of curcumin–PVP solid dispersion obtained by spray drying. Int J Pharm. 2004;271:281–6.

    Article  CAS  PubMed  Google Scholar 

  36. Sethia S, Squillante E. Solid dispersion of carbamazepine in PVP K30 by conventional solvent evaporation and supercritical methods. Int J Pharm. 2004;272:1–10.

    Article  CAS  PubMed  Google Scholar 

  37. Chen H, Pui Y, Liu C, Chen Z, Su C-C, Hageman M, et al. Moisture-induced amorphous phase separation of amorphous solid dispersions: molecular mechanism, microstructure, and its impact on dissolution performance. J Pharm Sci. 2018;107:317–26.

    Article  CAS  PubMed  Google Scholar 

  38. Rumondor ACF, Taylor LS. Effect of polymer hygroscopicity on the phase behavior of amorphous solid dispersions in the presence of moisture. Mol Pharm. 2010;7:477–90.

    Article  CAS  PubMed  Google Scholar 

  39. Knopp MM, Wendelboe J, Holm R, Rades T. Effect of amorphous phase separation and crystallization on the in vitro and in vivo performance of an amorphous solid dispersion. Eur J Pharm Biopharm. 2018;130:290–5.

    Article  CAS  PubMed  Google Scholar 

  40. Kapourani A, Chatzitheodoridou M, Valkanioti V, Manioudaki A-E, Bikiaris ND, Barmpalexis P. Evaluating the effect of kosmotropic inorganic salts in the in vitro dissolution behavior of tablets containing amorphous indomethacin-polyvinylpyrrolidone solid dispersions. J Drug Deliv Sci Technol. 2022;72: 103421.

    Article  CAS  Google Scholar 

  41. Rask MB, Knopp MM, Olesen NE, Holm R, Rades T. Influence of PVP/VA copolymer composition on drug–polymer solubility. Eur J Pharm Sci. 2016;85:10–7.

    Article  CAS  PubMed  Google Scholar 

  42. Knopp MM, Nguyen JH, Mu H, Langguth P, Rades T, Holm R. Influence of copolymer composition on in vitro and in vivo performance of celecoxib-PVP/VA amorphous solid dispersions. AAPS J. 2016;18:416–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Saboo S, Taylor LS. Water-induced phase separation of miconazole-poly (vinylpyrrolidone-co-vinyl acetate) amorphous solid dispersions: insights with confocal fluorescence microscopy. Int J Pharm. 2017;529:654–66.

    Article  CAS  PubMed  Google Scholar 

  44. Xi H, Ren J, Novak JM, Kemp E, Johnson G, Klinzing G, et al. The effect of inorganic salt on disintegration of tablets with high loading of amorphous solid dispersion containing copovidone. Pharm Res. 2020;37:70.

    Article  CAS  PubMed  Google Scholar 

  45. Pham AT, Lee PI. Probing the mechanisms of drug release from hydroxypropylmethyl cellulose matrices. Pharm Res. 1994;11:1379–84.

    Article  CAS  PubMed  Google Scholar 

  46. Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev. 2012;64:163–74.

    Article  Google Scholar 

  47. Xie T, Taylor LS. Dissolution performance of high drug loading celecoxib amorphous solid dispersions formulated with polymer combinations. Pharm Res. 2016;33:739–50.

    Article  CAS  PubMed  Google Scholar 

  48. Jansen PJ, Oren PL, Kemp CA, Maple SR, Baertschi SW. Characterization of impurities formed by interaction of duloxetine HCl with enteric polymers hydroxypropyl methylcellulose acetate succinate and hydroxypropyl methylcellulose phthalate. J Pharm Sci. 1998;87:81–5.

    Article  CAS  PubMed  Google Scholar 

  49. Yu D, Fiddler F, Ibrahim A, Sanedrin R, Tremblay H, Hoag SW. Surface characterization as a tool for identifying the factors affecting the dissolution rate of amorphous solid dispersion tablets. AAPS PharmSciTech. 2022;23:282.

    Article  CAS  PubMed  Google Scholar 

  50. Solanki NG, Lam K, Tahsin M, Gumaste SG, Shah AV, Serajuddin ATM. Effects of surfactants on itraconazole-HPMCAS solid dispersion prepared by hot-melt extrusion I: miscibility and drug release. J Pharm Sci. 2019;108:1453–65.

    Article  CAS  PubMed  Google Scholar 

  51. Ojo AT, Ma C, Lee PI. Elucidating the effect of crystallization on drug release from amorphous solid dispersions in soluble and insoluble carriers. Int J Pharm. 2020;591: 120005.

    Article  CAS  PubMed  Google Scholar 

  52. Yu D, Li J, Wang H, Pan H, Li T, Bu T, et al. Role of polymers in the physical and chemical stability of amorphous solid dispersion: a case study of carbamazepine. Eur J Pharm Sci. 2022;169: 106086.

    Article  CAS  PubMed  Google Scholar 

  53. Adhikari A, Polli JE. Characterization of grades of HPMCAS spray dried dispersions of itraconazole based on supersaturation kinetics and molecular interactions impacting formulation performance. Pharm Res. 2020;37:192.

    Article  CAS  PubMed  Google Scholar 

  54. Higashi K, Hayashi H, Yamamoto K, Moribe K. The effect of drug and EUDRAGIT® S 100 miscibility in solid dispersions on the drug and polymer dissolution rate. Int J Pharm. 2015;494:9–16.

    Article  CAS  PubMed  Google Scholar 

  55. Li J, Duggirala NK, Kumar NSK, Su Y, Suryanarayanan R. Design of ternary amorphous solid dispersions for enhanced dissolution of drug combinations. Mol Pharm. 2022;19:2950–61.

    Article  CAS  PubMed  Google Scholar 

  56. Doreth M, Löbmann K, Grohganz H, Holm R, Lopez de Diego H, Rades T, et al. Glass solution formation in water - in situ amorphization of naproxen and ibuprofen with Eudragit® E PO. J Drug Deliv Sci Technol. 2016;34:32–40.

  57. Lubach JW, Hau J. Solid-state NMR investigation of drug-excipient interactions and phase behavior in indomethacin-eudragit E amorphous solid dispersions. Pharm Res. 2018;35:65.

    Article  PubMed  Google Scholar 

  58. Sun M, Li B, Li Y, Liu Y, Liu Q, Jiang H, et al. Experimental observations and dissipative particle dynamic simulations on microstructures of pH-sensitive polymer containing amorphous solid dispersions. Int J Pharm. 2017;517:185–95.

    Article  CAS  PubMed  Google Scholar 

  59. Wang Z, Lou H, Dening TJ, Hageman MJ. Biorelevant dissolution method considerations for the appropriate evaluation of amorphous solid dispersions: are two stages necessary? J Pharm Sci. 2023;112:1089–107.

    Article  CAS  PubMed  Google Scholar 

  60. Yao X, Kim S, Gui Y, Chen Z, Yu J, Jones KJ, et al. Amorphous drug–polymer salt with high stability under tropical conditions and fast dissolution: the challenging case of lumefantrine-PAA. J Pharm Sci. 2021;110:3670–7.

    Article  CAS  PubMed  Google Scholar 

  61. Gui Y, McCann EC, Yao X, Li Y, Jones KJ, Yu L. Amorphous drug–polymer salt with high stability under tropical conditions and fast dissolution: the case of clofazimine and poly(acrylic acid). Mol Pharm. 2021;18:1364–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Song Y, Yang X, Chen X, Nie H, Byrn S, Lubach JW. Investigation of drug–excipient interactions in lapatinib amorphous solid dispersions using solid-state NMR spectroscopy. Mol Pharm. 2015;12:857–66.

    Article  CAS  PubMed  Google Scholar 

  63. Nie H, Su Y, Zhang M, Song Y, Leone A, Taylor LS, et al. Solid-state spectroscopic investigation of molecular interactions between clofazimine and hypromellose phthalate in amorphous solid dispersions. Mol Pharm. 2016;13:3964–75.

    Article  CAS  PubMed  Google Scholar 

  64. Bhujbal SV, Pathak V, Zemlyanov DY, Taylor LS, Zhou Q (Tony). Physical stability and dissolution of lumefantrine amorphous solid dispersions produced by spray anti-solvent precipitation. J Pharm Sci. 2021;110:2423–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Alam MA, Al-Jenoobi FI, Al-mohizea AM. Commercially bioavailable proprietary technologies and their marketed products. Drug Discov Today. 2013;18:936–49.

    Article  PubMed  Google Scholar 

  66. Lavra ZMM, Pereira de Santana D, Ré MI. Solubility and dissolution performances of spray-dried solid dispersion of Efavirenz in Soluplus. Drug Dev Ind Pharm. 2017;43:42–54.

    Article  CAS  PubMed  Google Scholar 

  67. Sarpal K, Munson EJ. Amorphous solid dispersions of felodipine and nifedipine with Soluplus®: drug-polymer miscibility and intermolecular interactions. J Pharm Sci. 2021;110:1457–69.

    Article  CAS  PubMed  Google Scholar 

  68. Sarpal K, Delaney S, Zhang GGZ, Munson EJ. Phase behavior of amorphous solid dispersions of felodipine: homogeneity and drug–polymer interactions. Mol Pharm. 2019;16:4836–51.

    Article  CAS  PubMed  Google Scholar 

  69. Xie T, Taylor LS. Improved release of celecoxib from high drug loading amorphous solid dispersions formulated with polyacrylic acid and cellulose derivatives. Mol Pharm. 2016;13:873–84.

    Article  CAS  PubMed  Google Scholar 

  70. Xie T, Gao W, Taylor LS. Impact of eudragit EPO and hydroxypropyl methylcellulose on drug release rate, supersaturation, precipitation outcome and redissolution rate of indomethacin amorphous solid dispersions. Int J Pharm. 2017;531:313–23.

    Article  CAS  PubMed  Google Scholar 

  71. Pawar J, Tayade A, Gangurde A, Moravkar K, Amin P. Solubility and dissolution enhancement of efavirenz hot melt extruded amorphous solid dispersions using combination of polymeric blends: a QbD approach. Eur J Pharm Sci. 2016;88:37–49.

    Article  CAS  PubMed  Google Scholar 

  72. Butreddy A, Sarabu S, Almutairi M, Ajjarapu S, Kolimi P, Bandari S, et al. Hot-melt extruded hydroxypropyl methylcellulose acetate succinate based amorphous solid dispersions: impact of polymeric combinations on supersaturation kinetics and dissolution performance. Int J Pharm. 2022;615: 121471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Newman A, Zografi G. Considerations in the development of physically stable high drug load API-polymer amorphous solid dispersions in the glassy state. J Pharm Sci. 2023;112:8–18.

    Article  CAS  PubMed  Google Scholar 

  74. Lin X, Hu Y, Liu L, Su L, Li N, Yu J, et al. Physical stability of amorphous solid dispersions: a physicochemical perspective with thermodynamic, kinetic and environmental aspects. Pharm Res. 2018;35:125.

    Article  PubMed  Google Scholar 

  75. Hiew TN, Taylor LS. Combining drug salt formation with amorphous solid dispersions–a double edged sword. J Control Release. 2022;352:47–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Van DT, Nguyen HT, Taylor LS. Combining enabling formulation strategies to generate supersaturated solutions of delamanid: in situ salt formation during amorphous solid dispersion fabrication for more robust release profiles. Eur J Pharm Biopharm. 2022;174:131–43.

    Article  Google Scholar 

  77. Fung MH, Suryanarayanan R. Effect of organic acids on molecular mobility, physical stability, and dissolution of ternary ketoconazole spray-dried dispersions. Mol Pharm. 2019;16:41–8.

    Article  CAS  PubMed  Google Scholar 

  78. Serajuddin ATM. Salt formation to improve drug solubility. Adv Drug Deliv Rev. 2007;59:603–16.

    Article  CAS  PubMed  Google Scholar 

  79. Mukesh S, Joshi P, Bansal AK, Kashyap MC, Mandal SK, Sathe V, et al. Amorphous salts solid dispersions of celecoxib: enhanced biopharmaceutical performance and physical stability. Mol Pharm. 2021;18:2334–48.

    Article  CAS  PubMed  Google Scholar 

  80. Liu X, Zhou L, Zhang F. Reactive melt extrusion to improve the dissolution performance and physical stability of naproxen amorphous solid dispersions. Mol Pharm. 2017;14:658–73.

    Article  PubMed  Google Scholar 

  81. Löbmann K, Laitinen R, Grohganz H, Gordon KC, Strachan C, Rades T. Coamorphous drug systems: enhanced physical stability and dissolution rate of indomethacin and naproxen. Mol Pharm. 2011;8:1919–28.

    Article  PubMed  Google Scholar 

  82. Allesø M, Chieng N, Rehder S, Rantanen J, Rades T, Aaltonen J. Enhanced dissolution rate and synchronized release of drugs in binary systems through formulation: amorphous naproxen–cimetidine mixtures prepared by mechanical activation. J Control Release. 2009;136:45–53.

    Article  PubMed  Google Scholar 

  83. Liu J, Grohganz H, Löbmann K, Rades T, Hempel N-J. Co-Amorphous Drug Formulations in Numbers: Recent Advances in Co-Amorphous Drug Formulations with Focus on Co-Formability, Molar Ratio, Preparation Methods, Physical Stability, In Vitro and In Vivo Performance, and New Formulation Strategies. Pharmaceutics. 2021;13:389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Haser A, Cao T, Lubach JW, Zhang F. In situ salt formation during melt extrusion for improved chemical stability and dissolution performance of a meloxicam–copovidone amorphous solid dispersion. Mol Pharm. 2018;15:1226–37.

    Article  CAS  PubMed  Google Scholar 

  85. Repka MA, Battu SK, Upadhye SB, Thumma S, Crowley MM, Zhang F, et al. Pharmaceutical applications of hot-melt extrusion: part II. Drug Dev Ind Pharm. 2007;33:1043–57.

    Article  CAS  PubMed  Google Scholar 

  86. Newman A, Zografi G. Perspectives on the wetting of solids in pharmaceutical systems. Pharm Res. 2023. https://doi.org/10.1007/s11095-023-03491-3.

  87. Yao X, Benson EG, Gui Y, Stelzer T, Zhang GGZ, Yu L. Surfactants accelerate crystallization of amorphous nifedipine by similar enhancement of nucleation and growth independent of hydrophilic–lipophilic balance. Mol Pharm. 2022;19:2343–50.

    Article  CAS  PubMed  Google Scholar 

  88. LaFountaine JS, McGinity JW, Williams RO. Challenges and strategies in thermal processing of amorphous solid dispersions: a review. AAPS PharmSciTech. 2016;17:43–55.

    Article  CAS  PubMed  Google Scholar 

  89. Bhanderi A, Bari F, Al-Obaidi H. Evaluation of the impact of surfactants on miscibility of griseofulvin in spray dried amorphous solid dispersions. J Drug Deliv Sci Technol. 2021;64: 102606.

    Article  CAS  Google Scholar 

  90. Gumaste SG, Gupta SS, Serajuddin ATM. Investigation of polymer-surfactant and polymer-drug-surfactant miscibility for solid dispersion. AAPS J. 2016;18:1131–43.

    Article  CAS  PubMed  Google Scholar 

  91. Ghebremeskel AN, Vemavarapu C, Lodaya M. Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API: stability testing of selected solid dispersions. Pharm Res. 2006;23:1928–36.

    Article  CAS  PubMed  Google Scholar 

  92. Yang R, Zhang GG, Zemlyanov DY, Purohit HS, Taylor LS. Drug release from surfactant-containing amorphous solid dispersions: mechanism and role of surfactant in release enhancement. Pharm Res. 2023. https://doi.org/10.1007/s11095-023-03502-3.

  93. Meng F, Ferreira R, Zhang F. Effect of surfactant level on properties of celecoxib amorphous solid dispersions. J Drug Deliv Sci Technol. 2019;49:301–7.

    Article  CAS  Google Scholar 

  94. Schittny A, Philipp-Bauer S, Detampel P, Huwyler J, Puchkov M. Mechanistic insights into effect of surfactants on oral bioavailability of amorphous solid dispersions. J Control Release. 2020;320:214–25.

    Article  CAS  PubMed  Google Scholar 

  95. Saboo S, Bapat P, Moseson D, Kestur U, Taylor L. Exploring the role of surfactants in enhancing drug release from amorphous solid dispersions at higher drug loadings. Pharmaceutics. 2021;13:735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chen Y, Wang S, Wang S, Liu C, Su C, Hageman M, et al. Sodium lauryl sulfate competitively interacts with HPMC-AS and consequently reduces oral bioavailability of posaconazole/HPMC-AS amorphous solid dispersion. Mol Pharm. 2016;13:2787–95.

    Article  CAS  PubMed  Google Scholar 

  97. Pui Y, Chen Y, Chen H, Wang S, Liu C, Tonnis W, et al. Maintaining supersaturation of nimodipine by PVP with or without the presence of sodium lauryl sulfate and sodium taurocholate. Mol Pharm. 2018;15:2754–63.

    Article  CAS  PubMed  Google Scholar 

  98. Deshpande TM, Shi H, Pietryka J, Hoag SW, Medek A. Investigation of polymer/surfactant interactions and their impact on itraconazole solubility and precipitation kinetics for developing spray-dried amorphous solid dispersions. Mol Pharm. 2018;15:962–74.

    Article  CAS  PubMed  Google Scholar 

  99. Wang S, Liu C, Chen H, Zhu A (Donghua), Qian F. Impact of surfactants on polymer maintained nifedipine supersaturation in aqueous solution. Pharm Res. 2020;37:113.

    Article  PubMed  Google Scholar 

  100. Liu C, Chen Z, Chen Y, Lu J, Li Y, Wang S, et al. Improving oral bioavailability of sorafenib by optimizing the “spring” and “parachute” based on molecular interaction mechanisms. Mol Pharm. 2016;13:599–608.

    Article  CAS  PubMed  Google Scholar 

  101. Tung N-T, Tran C-S, Nguyen T-L, Pham T-M-H, Chi S-C, Nguyen H-A, et al. Effect of surfactant on the in vitro dissolution and the oral bioavailability of a weakly basic drug from an amorphous solid dispersion. Eur J Pharm Sci. 2021;162:105836.

  102. Chen J, Ormes JD, Higgins JD, Taylor LS. Impact of surfactants on the crystallization of aqueous suspensions of celecoxib amorphous solid dispersion spray dried particles. Mol Pharm. 2015;12:533–41.

    Article  CAS  PubMed  Google Scholar 

  103. Correa-Soto CE, Gao Y, Indulkar AS, Zhang GGZ, Taylor LS. Role of surfactants in improving release from higher drug loading amorphous solid dispersions. Int J Pharm. 2022;625: 122120.

    Article  CAS  PubMed  Google Scholar 

  104. Yu J, Li Y, Yao X, Que C, Huang L, Hui H-W, et al. Surface enrichment of surfactants in amorphous drugs: an x-ray photoelectron spectroscopy study. Mol Pharm. 2022;19:654–60.

    Article  CAS  PubMed  Google Scholar 

  105. Guo Y, Sun CC. Pharmaceutical lauryl sulfate salts: prevalence, formation rules, and formulation implications. Mol Pharm. 2022;19:432–9.

    Article  CAS  PubMed  Google Scholar 

  106. Guo Y, Mishra MK, Wang C, Sun CC. Crystallographic and energetic insights into reduced dissolution and physical stability of a drug–surfactant salt: the case of norfloxacin lauryl sulfate. Mol Pharm. 2019;17(2):579–87.

    PubMed  Google Scholar 

  107. Guo Y, Wang C, Dun J, Du L, Hawley M, Sun CC. Mechanism for the reduced dissolution of ritonavir tablets by sodium lauryl sulfate. J Pharm Sci. 2019;108:516–24.

    Article  CAS  PubMed  Google Scholar 

  108. Li J, Wu Y. Lubricants in pharmaceutical solid dosage forms. Lubricants. 2014;2:21–43.

    Article  CAS  Google Scholar 

  109. Démuth B, Nagy ZK, Balogh A, Vigh T, Marosi G, Verreck G, et al. Downstream processing of polymer-based amorphous solid dispersions to generate tablet formulations. Int J Pharm. 2015;486:268–86.

    Article  PubMed  Google Scholar 

  110. Thakral NK, Mohapatra S, Stephenson GA, Suryanarayanan R. Compression-induced crystallization of amorphous indomethacin in tablets: characterization of spatial heterogeneity by two-dimensional x-ray diffractometry. Mol Pharm. 2015;12:253–63.

    Article  CAS  PubMed  Google Scholar 

  111. Koranne S, Lalge R, Suryanarayanan R. Modulation of microenvironmental acidity: a strategy to mitigate salt disproportionation in drug product environment. Mol Pharm. 2020;17:1324–34.

    Article  CAS  PubMed  Google Scholar 

  112. Nie H, Xu W, Ren J, Taylor LS, Marsac PJ, John CT, et al. Impact of metallic stearates on disproportionation of hydrochloride salts of weak bases in solid-state formulations. Mol Pharm. 2016;13:3541–52.

    Article  CAS  PubMed  Google Scholar 

  113. Duggirala NK, Vyas A, Krzyzaniak JF, Arora KK, Suryanarayanan R. Mechanistic insight into caffeine–oxalic cocrystal dissociation in formulations: role of excipients. Mol Pharm. 2017;14:3879–87.

    Article  CAS  PubMed  Google Scholar 

  114. Koranne S, Sahoo A, Krzyzaniak JF, Luthra S, Arora KK, Suryanarayanan R. Challenges in transitioning cocrystals from bench to bedside: dissociation in prototype drug product environment. Mol Pharm. 2018;15:3297–307.

    Article  CAS  PubMed  Google Scholar 

  115. Yu D, Nie H. Evaluation of alternative metallic stearates as lubricants in pharmaceutical tablet formulation. AAPS PharmSciTech. 2022;23:200.

    Article  CAS  PubMed  Google Scholar 

  116. Démuth B, Farkas A, Balogh A, Bartosiewicz K, Kállai-Szabó B, Bertels J, et al. Lubricant-induced crystallization of itraconazole from tablets made of electrospun amorphous solid dispersion. J Pharm Sci. 2016;105:2982–8.

    Article  PubMed  Google Scholar 

  117. Démuth B, Galata DL, Szabó E, Nagy B, Farkas A, Balogh A, et al. Investigation of deteriorated dissolution of amorphous itraconazole: description of incompatibility with magnesium stearate and possible solutions. Mol Pharm. 2017;14:3927–34.

    Article  PubMed  Google Scholar 

  118. Démuth B, Galata DL, Balogh A, Szabó E, Nagy B, Farkas A, et al. Application of hydroxypropyl methylcellulose as a protective agent against magnesium stearate induced crystallization of amorphous itraconazole. Eur J Pharm Sci. 2018;121:301–8.

    Article  PubMed  Google Scholar 

  119. Hughey JR, Keen JM, Miller DA, Kolter K, Langley N, McGinity JW. The use of inorganic salts to improve the dissolution characteristics of tablets containing Soluplus®-based solid dispersions. Eur J Pharm Sci. 2013;48:758–66.

    Article  CAS  PubMed  Google Scholar 

  120. Takano R, Maurer R, Jacob L, Stowasser F, Stillhart C, Page S. Formulating amorphous solid dispersions: impact of inorganic salts on drug release from tablets containing itraconazole-HPMC extrudate. Mol Pharm. 2020;17:2768–78.

    Article  CAS  PubMed  Google Scholar 

  121. Zhang Y, Cremer P. Interactions between macromolecules and ions: the Hofmeister series. Curr Opin Chem Biol. 2006;10:658–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The writing, reviewing, and editing of the review paper are assigned to the authors as follows:

Jinghan Li: introduction, sections of polymer combination, counterions, surfactants, and inorganic salts.

Yihan Wang: sections of the commonly used polymers in ASDs.

Dongyue Yu: writing of abstract, introduction and conclusion, sections of surfactants, MgSt, inorganic salts, and overall reviewing and editing of the paper.

Corresponding author

Correspondence to Dongyue Yu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, Y. & Yu, D. Effects of Additives on the Physical Stability and Dissolution of Polymeric Amorphous Solid Dispersions: a Review. AAPS PharmSciTech 24, 175 (2023). https://doi.org/10.1208/s12249-023-02622-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02622-8

Keywords

Navigation